YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Leakage Flows on Hot Gas Ingress

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 002::page 21010
    Author:
    Patinios, Marios
    ,
    Ong, Irvin L.
    ,
    Scobie, James A.
    ,
    Lock, Gary D.
    ,
    Sangan, Carl M.
    DOI: 10.1115/1.4040846
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: One of the most important problems facing gas turbine designers today is the ingestion of hot mainstream gases into the wheel-space between the turbine disk (rotor) and its adjacent casing (stator). A rim seal is fitted at the periphery and a superposed sealant flow—typically fed through the bore of the stator—is used to prevent ingress. The majority of research studies investigating ingress do so in the absence of any leakage paths that exist throughout the engine's architecture. These inevitable pathways are found between the mating interfaces of adjacent pieces of hardware. In an environment where the turbine is subjected to aggressive thermal and centrifugal loading, these interface gaps can be difficult to predict and the resulting leakage flows which pass through them even harder to account for. This paper describes experimental results from a research facility which experimentally models hot gas ingestion into the wheel-space of an axial turbine stage. The facility was specifically designed to incorporate leakage flows through the stator disk; leakage flows were introduced axially through the stator shroud or directly underneath the vane carrier ring. Measurements of CO2 gas concentration, static pressure, and total pressure were used to examine the wheel-space flow structure with and without ingress from the mainstream gas-path. Data are presented for a simple axial-clearance rim-seal. The results support two distinct flow-structures, which are shown to be dependent on the mass-flow ratio of bore and leakage flows. Once the leakage flow was increased above a certain threshold, the flow structure is shown to transition from a classical Batchelor-type rotor-stator system to a vortex-dominated structure. The existence of a toroidal vortex immediately inboard of the outer rim-seal is shown to encourage ingestion.
    • Download: (2.665Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Leakage Flows on Hot Gas Ingress

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255742
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorPatinios, Marios
    contributor authorOng, Irvin L.
    contributor authorScobie, James A.
    contributor authorLock, Gary D.
    contributor authorSangan, Carl M.
    date accessioned2019-03-17T09:52:09Z
    date available2019-03-17T09:52:09Z
    date copyright9/26/2018 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_02_021010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255742
    description abstractOne of the most important problems facing gas turbine designers today is the ingestion of hot mainstream gases into the wheel-space between the turbine disk (rotor) and its adjacent casing (stator). A rim seal is fitted at the periphery and a superposed sealant flow—typically fed through the bore of the stator—is used to prevent ingress. The majority of research studies investigating ingress do so in the absence of any leakage paths that exist throughout the engine's architecture. These inevitable pathways are found between the mating interfaces of adjacent pieces of hardware. In an environment where the turbine is subjected to aggressive thermal and centrifugal loading, these interface gaps can be difficult to predict and the resulting leakage flows which pass through them even harder to account for. This paper describes experimental results from a research facility which experimentally models hot gas ingestion into the wheel-space of an axial turbine stage. The facility was specifically designed to incorporate leakage flows through the stator disk; leakage flows were introduced axially through the stator shroud or directly underneath the vane carrier ring. Measurements of CO2 gas concentration, static pressure, and total pressure were used to examine the wheel-space flow structure with and without ingress from the mainstream gas-path. Data are presented for a simple axial-clearance rim-seal. The results support two distinct flow-structures, which are shown to be dependent on the mass-flow ratio of bore and leakage flows. Once the leakage flow was increased above a certain threshold, the flow structure is shown to transition from a classical Batchelor-type rotor-stator system to a vortex-dominated structure. The existence of a toroidal vortex immediately inboard of the outer rim-seal is shown to encourage ingestion.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInfluence of Leakage Flows on Hot Gas Ingress
    typeJournal Paper
    journal volume141
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4040846
    journal fristpage21010
    journal lastpage021010-10
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian