YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of the Transient Heat Transfer Measurement Technique Using Thermochromic Liquid Crystals in a Network Configuration With Intersecting Circular Passages

    Source: Journal of Turbomachinery:;2019:;volume( 141 ):;issue: 005::page 51010
    Author:
    Steurer, Anika
    ,
    Poser, Rico
    ,
    von Wolfersdorf, Jens
    ,
    Retzko, Stefan
    DOI: 10.1115/1.4041807
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The present study deals with the application of the transient thermochromic liquid crystal (TLC) technique in a flow network of intersecting circular passages as a potential internal turbine component cooling geometry. The investigated network consists of six circular passages with a diameter d = 20 mm that intersect coplanar at an angle θ = 40 deg, the innermost in three, the outermost in one intersection level. Two additional nonintersecting passages serve as references. Such a flow network entails specific characteristics associated with the transient TLC method that have to be accounted for in the evaluation process: the strongly curved surfaces, the mixing and mass flow redistribution at each intersection point, and the resulting gradients between the wall and passage centerline temperatures. All this impedes the choice of a representative fluid reference temperature, which results in deviations using established evaluation methods. An alternative evaluation approach is introduced, which is supported by computational results obtained from steady-state three-dimensional (3D) Reynolds-averaged Navier–Stokes equations (RANS) simulations using the shear-stress transport (SST) turbulence model. The presented analysis uncouples local heat transfer (HT) coefficients from actually measured local temperatures but uses the time information of the thermocouples (TC) instead that represents the fluid temperature step change and evolution along the passages. This experimental time information is transferred to the steady-state numerical bulk temperatures, which are finally used as local references to evaluate the transient TLC experiments. As effective local mass flow rates in the passage sections are considered, the approach eventually allows for a conclusion whether HT is locally enhanced due to higher mass flow rates or the intersection effects.
    • Download: (1.688Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of the Transient Heat Transfer Measurement Technique Using Thermochromic Liquid Crystals in a Network Configuration With Intersecting Circular Passages

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255655
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorSteurer, Anika
    contributor authorPoser, Rico
    contributor authorvon Wolfersdorf, Jens
    contributor authorRetzko, Stefan
    date accessioned2019-03-17T09:44:03Z
    date available2019-03-17T09:44:03Z
    date copyright1/25/2019 12:00:00 AM
    date issued2019
    identifier issn0889-504X
    identifier otherturbo_141_05_051010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255655
    description abstractThe present study deals with the application of the transient thermochromic liquid crystal (TLC) technique in a flow network of intersecting circular passages as a potential internal turbine component cooling geometry. The investigated network consists of six circular passages with a diameter d = 20 mm that intersect coplanar at an angle θ = 40 deg, the innermost in three, the outermost in one intersection level. Two additional nonintersecting passages serve as references. Such a flow network entails specific characteristics associated with the transient TLC method that have to be accounted for in the evaluation process: the strongly curved surfaces, the mixing and mass flow redistribution at each intersection point, and the resulting gradients between the wall and passage centerline temperatures. All this impedes the choice of a representative fluid reference temperature, which results in deviations using established evaluation methods. An alternative evaluation approach is introduced, which is supported by computational results obtained from steady-state three-dimensional (3D) Reynolds-averaged Navier–Stokes equations (RANS) simulations using the shear-stress transport (SST) turbulence model. The presented analysis uncouples local heat transfer (HT) coefficients from actually measured local temperatures but uses the time information of the thermocouples (TC) instead that represents the fluid temperature step change and evolution along the passages. This experimental time information is transferred to the steady-state numerical bulk temperatures, which are finally used as local references to evaluate the transient TLC experiments. As effective local mass flow rates in the passage sections are considered, the approach eventually allows for a conclusion whether HT is locally enhanced due to higher mass flow rates or the intersection effects.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleApplication of the Transient Heat Transfer Measurement Technique Using Thermochromic Liquid Crystals in a Network Configuration With Intersecting Circular Passages
    typeJournal Paper
    journal volume141
    journal issue5
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4041807
    journal fristpage51010
    journal lastpage051010-9
    treeJournal of Turbomachinery:;2019:;volume( 141 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian