YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Enhanced Polynomial Chaos-Based Extended Kalman Filter Technique for Parameter Estimation

    Source: Journal of Computational and Nonlinear Dynamics:;2018:;volume( 013 ):;issue: 002::page 21012
    Author:
    Kolansky, Jeremy
    ,
    Sandu, Corina
    DOI: 10.1115/1.4031194
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The generalized polynomial chaos (gPC) mathematical technique, when integrated with the extended Kalman filter (EKF) method, provides a parameter estimation and state tracking method. The truncation of the series expansions degrades the link between parameter convergence and parameter uncertainty which the filter uses to perform the estimations. An empirically derived correction for this problem is implemented, which maintains the original parameter distributions. A comparison is performed to illustrate the improvements of the proposed approach. The method is demonstrated for parameter estimation on a regression system, where it is compared to the recursive least squares (RLS) method.
    • Download: (1.164Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Enhanced Polynomial Chaos-Based Extended Kalman Filter Technique for Parameter Estimation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253713
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorKolansky, Jeremy
    contributor authorSandu, Corina
    date accessioned2019-02-28T11:11:50Z
    date available2019-02-28T11:11:50Z
    date copyright11/29/2017 12:00:00 AM
    date issued2018
    identifier issn1555-1415
    identifier othercnd_013_02_021012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253713
    description abstractThe generalized polynomial chaos (gPC) mathematical technique, when integrated with the extended Kalman filter (EKF) method, provides a parameter estimation and state tracking method. The truncation of the series expansions degrades the link between parameter convergence and parameter uncertainty which the filter uses to perform the estimations. An empirically derived correction for this problem is implemented, which maintains the original parameter distributions. A comparison is performed to illustrate the improvements of the proposed approach. The method is demonstrated for parameter estimation on a regression system, where it is compared to the recursive least squares (RLS) method.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEnhanced Polynomial Chaos-Based Extended Kalman Filter Technique for Parameter Estimation
    typeJournal Paper
    journal volume13
    journal issue2
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4031194
    journal fristpage21012
    journal lastpage021012-9
    treeJournal of Computational and Nonlinear Dynamics:;2018:;volume( 013 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian