Show simple item record

contributor authorKolansky, Jeremy
contributor authorSandu, Corina
date accessioned2019-02-28T11:11:50Z
date available2019-02-28T11:11:50Z
date copyright11/29/2017 12:00:00 AM
date issued2018
identifier issn1555-1415
identifier othercnd_013_02_021012.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253713
description abstractThe generalized polynomial chaos (gPC) mathematical technique, when integrated with the extended Kalman filter (EKF) method, provides a parameter estimation and state tracking method. The truncation of the series expansions degrades the link between parameter convergence and parameter uncertainty which the filter uses to perform the estimations. An empirically derived correction for this problem is implemented, which maintains the original parameter distributions. A comparison is performed to illustrate the improvements of the proposed approach. The method is demonstrated for parameter estimation on a regression system, where it is compared to the recursive least squares (RLS) method.
publisherThe American Society of Mechanical Engineers (ASME)
titleEnhanced Polynomial Chaos-Based Extended Kalman Filter Technique for Parameter Estimation
typeJournal Paper
journal volume13
journal issue2
journal titleJournal of Computational and Nonlinear Dynamics
identifier doi10.1115/1.4031194
journal fristpage21012
journal lastpage021012-9
treeJournal of Computational and Nonlinear Dynamics:;2018:;volume( 013 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record