YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models—Part I: Theoretical Support

    Source: Journal of Turbomachinery:;2018:;volume 140:;issue 012::page 121006
    Author:
    Corral, Roque
    ,
    Vega, Almudena
    DOI: 10.1115/1.4041373
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A simple nondimensional model to describe the flutter onset of labyrinth seals is presented. The linearized mass and momentum integral equations for a control volume which represents the interfin seal cavity, retaining the circumferential unsteady flow perturbations created by the seal vibration, are used. First, the downstream fin is assumed to be choked, whereas in a second step the model is generalized for unchoked exit conditions. An analytical expression for the nondimensional work-per-cycle is derived. It is concluded that the stability of a two-fin seal depends on three nondimensional parameters, which allow explaining seal flutter behavior in a comprehensive fashion. These parameters account for the effect of the pressure ratio, the cavity geometry, the fin clearance, the nodal diameter (ND), the fluid swirl velocity, the vibration frequency, and the torsion center location in a compact and interrelated form. A number of conclusions have been drawn by means of a thorough examination of the work-per-cycle expression, also known as the stability parameter by other authors. It was found that the physics of the problem strongly depends on the nondimensional acoustic frequency. When the discharge time of the seal cavity is much greater than the acoustic propagation time, the damping of the system is very small and the amplitude of the response at the resonance conditions is very high. The model not only provides a unified framework for the stability criteria derived by Ehrich (1968, “Aeroelastic Instability in Labyrinth Seals,” ASME J. Eng. Gas Turbines Power, 90(4), pp. 369–374) and Abbot (1981, “Advances in Labyrinth Seal Aeroelastic Instability Prediction and Prevention,” ASME J. Eng. Gas Turbines Power, 103(2), pp. 308–312), but delivers an explicit expression for the work-per-cycle of a two-fin rotating seal. All the existing and well-established engineering trends are contained in the model, despite its simplicity. Finally, the effect of swirl in the fluid is included. It is found that the swirl of the fluid in the interfin cavity gives rise to a correction of the resonance frequency and shifts the stability region. The nondimensionalization of the governing equations is an essential part of the method and it groups physical effects in a very compact form. Part I of the paper details the derivation of the theoretical model and draws some preliminary conclusions. Part II of the corresponding paper analyzes in depth the implications of the model and outlines the extension to multiple cavity seals.
    • Download: (1.180Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models—Part I: Theoretical Support

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253280
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorCorral, Roque
    contributor authorVega, Almudena
    date accessioned2019-02-28T11:09:27Z
    date available2019-02-28T11:09:27Z
    date copyright10/18/2018 12:00:00 AM
    date issued2018
    identifier issn0889-504X
    identifier otherturbo_140_12_121006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253280
    description abstractA simple nondimensional model to describe the flutter onset of labyrinth seals is presented. The linearized mass and momentum integral equations for a control volume which represents the interfin seal cavity, retaining the circumferential unsteady flow perturbations created by the seal vibration, are used. First, the downstream fin is assumed to be choked, whereas in a second step the model is generalized for unchoked exit conditions. An analytical expression for the nondimensional work-per-cycle is derived. It is concluded that the stability of a two-fin seal depends on three nondimensional parameters, which allow explaining seal flutter behavior in a comprehensive fashion. These parameters account for the effect of the pressure ratio, the cavity geometry, the fin clearance, the nodal diameter (ND), the fluid swirl velocity, the vibration frequency, and the torsion center location in a compact and interrelated form. A number of conclusions have been drawn by means of a thorough examination of the work-per-cycle expression, also known as the stability parameter by other authors. It was found that the physics of the problem strongly depends on the nondimensional acoustic frequency. When the discharge time of the seal cavity is much greater than the acoustic propagation time, the damping of the system is very small and the amplitude of the response at the resonance conditions is very high. The model not only provides a unified framework for the stability criteria derived by Ehrich (1968, “Aeroelastic Instability in Labyrinth Seals,” ASME J. Eng. Gas Turbines Power, 90(4), pp. 369–374) and Abbot (1981, “Advances in Labyrinth Seal Aeroelastic Instability Prediction and Prevention,” ASME J. Eng. Gas Turbines Power, 103(2), pp. 308–312), but delivers an explicit expression for the work-per-cycle of a two-fin rotating seal. All the existing and well-established engineering trends are contained in the model, despite its simplicity. Finally, the effect of swirl in the fluid is included. It is found that the swirl of the fluid in the interfin cavity gives rise to a correction of the resonance frequency and shifts the stability region. The nondimensionalization of the governing equations is an essential part of the method and it groups physical effects in a very compact form. Part I of the paper details the derivation of the theoretical model and draws some preliminary conclusions. Part II of the corresponding paper analyzes in depth the implications of the model and outlines the extension to multiple cavity seals.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleConceptual Flutter Analysis of Labyrinth Seals Using Analytical Models—Part I: Theoretical Support
    typeJournal Paper
    journal volume140
    journal issue12
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4041373
    journal fristpage121006
    journal lastpage121006-11
    treeJournal of Turbomachinery:;2018:;volume 140:;issue 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian