Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models—Part I: Theoretical SupportSource: Journal of Turbomachinery:;2018:;volume 140:;issue 012::page 121006DOI: 10.1115/1.4041373Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: A simple nondimensional model to describe the flutter onset of labyrinth seals is presented. The linearized mass and momentum integral equations for a control volume which represents the interfin seal cavity, retaining the circumferential unsteady flow perturbations created by the seal vibration, are used. First, the downstream fin is assumed to be choked, whereas in a second step the model is generalized for unchoked exit conditions. An analytical expression for the nondimensional work-per-cycle is derived. It is concluded that the stability of a two-fin seal depends on three nondimensional parameters, which allow explaining seal flutter behavior in a comprehensive fashion. These parameters account for the effect of the pressure ratio, the cavity geometry, the fin clearance, the nodal diameter (ND), the fluid swirl velocity, the vibration frequency, and the torsion center location in a compact and interrelated form. A number of conclusions have been drawn by means of a thorough examination of the work-per-cycle expression, also known as the stability parameter by other authors. It was found that the physics of the problem strongly depends on the nondimensional acoustic frequency. When the discharge time of the seal cavity is much greater than the acoustic propagation time, the damping of the system is very small and the amplitude of the response at the resonance conditions is very high. The model not only provides a unified framework for the stability criteria derived by Ehrich (1968, “Aeroelastic Instability in Labyrinth Seals,” ASME J. Eng. Gas Turbines Power, 90(4), pp. 369–374) and Abbot (1981, “Advances in Labyrinth Seal Aeroelastic Instability Prediction and Prevention,” ASME J. Eng. Gas Turbines Power, 103(2), pp. 308–312), but delivers an explicit expression for the work-per-cycle of a two-fin rotating seal. All the existing and well-established engineering trends are contained in the model, despite its simplicity. Finally, the effect of swirl in the fluid is included. It is found that the swirl of the fluid in the interfin cavity gives rise to a correction of the resonance frequency and shifts the stability region. The nondimensionalization of the governing equations is an essential part of the method and it groups physical effects in a very compact form. Part I of the paper details the derivation of the theoretical model and draws some preliminary conclusions. Part II of the corresponding paper analyzes in depth the implications of the model and outlines the extension to multiple cavity seals.
|
Collections
Show full item record
contributor author | Corral, Roque | |
contributor author | Vega, Almudena | |
date accessioned | 2019-02-28T11:09:27Z | |
date available | 2019-02-28T11:09:27Z | |
date copyright | 10/18/2018 12:00:00 AM | |
date issued | 2018 | |
identifier issn | 0889-504X | |
identifier other | turbo_140_12_121006.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4253280 | |
description abstract | A simple nondimensional model to describe the flutter onset of labyrinth seals is presented. The linearized mass and momentum integral equations for a control volume which represents the interfin seal cavity, retaining the circumferential unsteady flow perturbations created by the seal vibration, are used. First, the downstream fin is assumed to be choked, whereas in a second step the model is generalized for unchoked exit conditions. An analytical expression for the nondimensional work-per-cycle is derived. It is concluded that the stability of a two-fin seal depends on three nondimensional parameters, which allow explaining seal flutter behavior in a comprehensive fashion. These parameters account for the effect of the pressure ratio, the cavity geometry, the fin clearance, the nodal diameter (ND), the fluid swirl velocity, the vibration frequency, and the torsion center location in a compact and interrelated form. A number of conclusions have been drawn by means of a thorough examination of the work-per-cycle expression, also known as the stability parameter by other authors. It was found that the physics of the problem strongly depends on the nondimensional acoustic frequency. When the discharge time of the seal cavity is much greater than the acoustic propagation time, the damping of the system is very small and the amplitude of the response at the resonance conditions is very high. The model not only provides a unified framework for the stability criteria derived by Ehrich (1968, “Aeroelastic Instability in Labyrinth Seals,” ASME J. Eng. Gas Turbines Power, 90(4), pp. 369–374) and Abbot (1981, “Advances in Labyrinth Seal Aeroelastic Instability Prediction and Prevention,” ASME J. Eng. Gas Turbines Power, 103(2), pp. 308–312), but delivers an explicit expression for the work-per-cycle of a two-fin rotating seal. All the existing and well-established engineering trends are contained in the model, despite its simplicity. Finally, the effect of swirl in the fluid is included. It is found that the swirl of the fluid in the interfin cavity gives rise to a correction of the resonance frequency and shifts the stability region. The nondimensionalization of the governing equations is an essential part of the method and it groups physical effects in a very compact form. Part I of the paper details the derivation of the theoretical model and draws some preliminary conclusions. Part II of the corresponding paper analyzes in depth the implications of the model and outlines the extension to multiple cavity seals. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models—Part I: Theoretical Support | |
type | Journal Paper | |
journal volume | 140 | |
journal issue | 12 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.4041373 | |
journal fristpage | 121006 | |
journal lastpage | 121006-11 | |
tree | Journal of Turbomachinery:;2018:;volume 140:;issue 012 | |
contenttype | Fulltext |