Show simple item record

contributor authorCorral, Roque
contributor authorVega, Almudena
date accessioned2019-02-28T11:09:27Z
date available2019-02-28T11:09:27Z
date copyright10/18/2018 12:00:00 AM
date issued2018
identifier issn0889-504X
identifier otherturbo_140_12_121006.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253280
description abstractA simple nondimensional model to describe the flutter onset of labyrinth seals is presented. The linearized mass and momentum integral equations for a control volume which represents the interfin seal cavity, retaining the circumferential unsteady flow perturbations created by the seal vibration, are used. First, the downstream fin is assumed to be choked, whereas in a second step the model is generalized for unchoked exit conditions. An analytical expression for the nondimensional work-per-cycle is derived. It is concluded that the stability of a two-fin seal depends on three nondimensional parameters, which allow explaining seal flutter behavior in a comprehensive fashion. These parameters account for the effect of the pressure ratio, the cavity geometry, the fin clearance, the nodal diameter (ND), the fluid swirl velocity, the vibration frequency, and the torsion center location in a compact and interrelated form. A number of conclusions have been drawn by means of a thorough examination of the work-per-cycle expression, also known as the stability parameter by other authors. It was found that the physics of the problem strongly depends on the nondimensional acoustic frequency. When the discharge time of the seal cavity is much greater than the acoustic propagation time, the damping of the system is very small and the amplitude of the response at the resonance conditions is very high. The model not only provides a unified framework for the stability criteria derived by Ehrich (1968, “Aeroelastic Instability in Labyrinth Seals,” ASME J. Eng. Gas Turbines Power, 90(4), pp. 369–374) and Abbot (1981, “Advances in Labyrinth Seal Aeroelastic Instability Prediction and Prevention,” ASME J. Eng. Gas Turbines Power, 103(2), pp. 308–312), but delivers an explicit expression for the work-per-cycle of a two-fin rotating seal. All the existing and well-established engineering trends are contained in the model, despite its simplicity. Finally, the effect of swirl in the fluid is included. It is found that the swirl of the fluid in the interfin cavity gives rise to a correction of the resonance frequency and shifts the stability region. The nondimensionalization of the governing equations is an essential part of the method and it groups physical effects in a very compact form. Part I of the paper details the derivation of the theoretical model and draws some preliminary conclusions. Part II of the corresponding paper analyzes in depth the implications of the model and outlines the extension to multiple cavity seals.
publisherThe American Society of Mechanical Engineers (ASME)
titleConceptual Flutter Analysis of Labyrinth Seals Using Analytical Models—Part I: Theoretical Support
typeJournal Paper
journal volume140
journal issue12
journal titleJournal of Turbomachinery
identifier doi10.1115/1.4041373
journal fristpage121006
journal lastpage121006-11
treeJournal of Turbomachinery:;2018:;volume 140:;issue 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record