YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat Transfer Enhancement in Ferrofluids Flow in Micro and Macro Parallel Plate Channels: A Comparative Numerical Study

    Source: Journal of Thermal Science and Engineering Applications:;2018:;volume( 010 ):;issue: 002::page 21012
    Author:
    Sengupta, Aditi
    ,
    Ghoshdastidar, P. S.
    DOI: 10.1115/1.4038483
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a comparative numerical study of heat transfer enhancement in steady, laminar, hydrodynamically fully developed flow of water-based ferrofluids under no magnetic field in micro and macro parallel plate channels subjected to constant equal heat fluxes on its top and bottom, considering Brownian diffusion and thermophoresis of ferroparticles in the base fluid. While the microchannel results match very well with the experimental data for water in an equivalent microtube (Kurtoglu et al., 2014, “Experimental Study on Convective Heat Transfer Performance of Iron Oxide Based Ferrofluids in Microtubes,” ASME J. Therm. Sci. Eng. Appl., 6(3), p. 034501.), the numerically predicted enhancement factor in ferrofluids is much below that for the same microtube. A detailed parametric study points to possible inaccuracies in the experimental results of Kurtoglu et al. (2014, “Experimental Study on Convective Heat Transfer Performance of Iron Oxide Based Ferrofluids in Microtubes,” ASME J. Therm. Sci. Eng. Appl., 6(3), p. 034501.) for ferrofluids. The nanoparticle concentration profiles in the microchannel flow reveal that (a) the nanoparticle concentration at the wall increases with axial distance, (b) the wall nanoparticle concentration decreases with increasing heat flux, and (c) the concentration profile of nanoparticles is parabolic at the exit. A comparison of thermally developing flow in microchannel and macrochannel of the same length (0.025 m) indicates that the enhancement factor at the microchannel exit is 1.089 which is only marginally higher than that at the macrochannel exit in the heat flux range of 20–80 kW/m2. On the other hand, for the thermally fully developed flow in both microchannel and macrochannel of the same length (0.54 m) the maximum enhancement factor for the macrochannel is 1.7, as compared to 1.1 for the microchannel, in the heat flux range of 1–4 kW/m2.
    • Download: (1.378Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat Transfer Enhancement in Ferrofluids Flow in Micro and Macro Parallel Plate Channels: A Comparative Numerical Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253056
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorSengupta, Aditi
    contributor authorGhoshdastidar, P. S.
    date accessioned2019-02-28T11:08:09Z
    date available2019-02-28T11:08:09Z
    date copyright12/20/2017 12:00:00 AM
    date issued2018
    identifier issn1948-5085
    identifier othertsea_010_02_021012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253056
    description abstractThis paper presents a comparative numerical study of heat transfer enhancement in steady, laminar, hydrodynamically fully developed flow of water-based ferrofluids under no magnetic field in micro and macro parallel plate channels subjected to constant equal heat fluxes on its top and bottom, considering Brownian diffusion and thermophoresis of ferroparticles in the base fluid. While the microchannel results match very well with the experimental data for water in an equivalent microtube (Kurtoglu et al., 2014, “Experimental Study on Convective Heat Transfer Performance of Iron Oxide Based Ferrofluids in Microtubes,” ASME J. Therm. Sci. Eng. Appl., 6(3), p. 034501.), the numerically predicted enhancement factor in ferrofluids is much below that for the same microtube. A detailed parametric study points to possible inaccuracies in the experimental results of Kurtoglu et al. (2014, “Experimental Study on Convective Heat Transfer Performance of Iron Oxide Based Ferrofluids in Microtubes,” ASME J. Therm. Sci. Eng. Appl., 6(3), p. 034501.) for ferrofluids. The nanoparticle concentration profiles in the microchannel flow reveal that (a) the nanoparticle concentration at the wall increases with axial distance, (b) the wall nanoparticle concentration decreases with increasing heat flux, and (c) the concentration profile of nanoparticles is parabolic at the exit. A comparison of thermally developing flow in microchannel and macrochannel of the same length (0.025 m) indicates that the enhancement factor at the microchannel exit is 1.089 which is only marginally higher than that at the macrochannel exit in the heat flux range of 20–80 kW/m2. On the other hand, for the thermally fully developed flow in both microchannel and macrochannel of the same length (0.54 m) the maximum enhancement factor for the macrochannel is 1.7, as compared to 1.1 for the microchannel, in the heat flux range of 1–4 kW/m2.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeat Transfer Enhancement in Ferrofluids Flow in Micro and Macro Parallel Plate Channels: A Comparative Numerical Study
    typeJournal Paper
    journal volume10
    journal issue2
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4038483
    journal fristpage21012
    journal lastpage021012-9
    treeJournal of Thermal Science and Engineering Applications:;2018:;volume( 010 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian