YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Analysis of Flow Fields and Temperature Fields in a Regenerative Heating Furnace for Steel Pipes

    Source: Journal of Thermal Science and Engineering Applications:;2018:;volume( 010 ):;issue: 003::page 31010
    Author:
    Han, Yi
    ,
    Liu, Feng
    ,
    Ran, Xin
    DOI: 10.1115/1.4038702
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In the production process of large-diameter seamless steel pipes, the blank heating quality before roll piercing has an important effect on whether subsequently conforming piping is produced. Obtaining accurate pipe blank heating temperature fields is the basis for establishing and optimizing a seamless pipe heating schedule. In this paper, the thermal process in a regenerative heating furnace was studied using fluent software, and the distribution laws of the flow field in the furnace and of the temperature field around the pipe blanks were obtained and verified experimentally. The heating furnace for pipe blanks was analyzed from multiple perspectives, including overall flow field, flow fields at different cross sections, and overall temperature field. It was found that the changeover process of the regenerative heating furnace caused the temperature in the upper part of the furnace to fluctuate. Under the pipe blanks, the gas flow was relatively thin, and the flow velocity was relatively low, facilitating the formation of a viscous turbulent layer and thereby inhibiting heat exchange around the pipe blanks. The mutual interference between the gas flow from burners and the return gas from the furnace tail flue led to different flow velocity directions at different positions, and such interference was relatively evident in the middle part of the furnace. A temperature “layering” phenomenon occurred between the upper and lower parts of the pipe blanks. The study in this paper has some significant usefulness for in-depth exploration of the characteristics of regenerative heating furnaces for steel pipes.
    • Download: (4.379Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Analysis of Flow Fields and Temperature Fields in a Regenerative Heating Furnace for Steel Pipes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252993
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorHan, Yi
    contributor authorLiu, Feng
    contributor authorRan, Xin
    date accessioned2019-02-28T11:07:49Z
    date available2019-02-28T11:07:49Z
    date copyright3/28/2018 12:00:00 AM
    date issued2018
    identifier issn1948-5085
    identifier othertsea_010_03_031010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252993
    description abstractIn the production process of large-diameter seamless steel pipes, the blank heating quality before roll piercing has an important effect on whether subsequently conforming piping is produced. Obtaining accurate pipe blank heating temperature fields is the basis for establishing and optimizing a seamless pipe heating schedule. In this paper, the thermal process in a regenerative heating furnace was studied using fluent software, and the distribution laws of the flow field in the furnace and of the temperature field around the pipe blanks were obtained and verified experimentally. The heating furnace for pipe blanks was analyzed from multiple perspectives, including overall flow field, flow fields at different cross sections, and overall temperature field. It was found that the changeover process of the regenerative heating furnace caused the temperature in the upper part of the furnace to fluctuate. Under the pipe blanks, the gas flow was relatively thin, and the flow velocity was relatively low, facilitating the formation of a viscous turbulent layer and thereby inhibiting heat exchange around the pipe blanks. The mutual interference between the gas flow from burners and the return gas from the furnace tail flue led to different flow velocity directions at different positions, and such interference was relatively evident in the middle part of the furnace. A temperature “layering” phenomenon occurred between the upper and lower parts of the pipe blanks. The study in this paper has some significant usefulness for in-depth exploration of the characteristics of regenerative heating furnaces for steel pipes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Analysis of Flow Fields and Temperature Fields in a Regenerative Heating Furnace for Steel Pipes
    typeJournal Paper
    journal volume10
    journal issue3
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4038702
    journal fristpage31010
    journal lastpage031010-10
    treeJournal of Thermal Science and Engineering Applications:;2018:;volume( 010 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian