YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ducted Wind Turbine Optimization

    Source: Journal of Solar Energy Engineering:;2018:;volume( 140 ):;issue: 001::page 11005
    Author:
    Venters, Ravon
    ,
    Helenbrook, Brian T.
    ,
    Visser, Kenneth D.
    DOI: 10.1115/1.4037741
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study presents a numerical optimization of a ducted wind turbine (DWT) to maximize power output. The cross section of the duct was an Eppler 423 airfoil, which is a cambered airfoil with a high lift coefficient (CL). The rotor was modeled as an actuator disk, and the Reynolds-averaged Navier–Stokes (RANS) k–ε model was used to simulate the flow. The optimization determined the optimal placement and angle for the duct relative to the rotor disk, as well as the optimal coefficient of thrust for the rotor. It was determined that the optimal coefficient of thrust is similar to an open rotor in spite of the fact that the local flow velocity is modified by the duct. The optimal angle of attack of the duct was much larger than the separation angle of attack of the airfoil in a freestream. Large angles of attack did not induce separation on the duct because the expansion caused by the rotor disk helped keep the flow attached. For the same rotor area, the power output of the largest DWT was 66% greater than an open rotor. For the same total cross-sectional area of the entire device, the DWT also outperformed an open rotor, exceeding Betz's limit by a small margin.
    • Download: (2.000Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ducted Wind Turbine Optimization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252950
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorVenters, Ravon
    contributor authorHelenbrook, Brian T.
    contributor authorVisser, Kenneth D.
    date accessioned2019-02-28T11:07:32Z
    date available2019-02-28T11:07:32Z
    date copyright11/29/2017 12:00:00 AM
    date issued2018
    identifier issn0199-6231
    identifier othersol_140_01_011005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252950
    description abstractThis study presents a numerical optimization of a ducted wind turbine (DWT) to maximize power output. The cross section of the duct was an Eppler 423 airfoil, which is a cambered airfoil with a high lift coefficient (CL). The rotor was modeled as an actuator disk, and the Reynolds-averaged Navier–Stokes (RANS) k–ε model was used to simulate the flow. The optimization determined the optimal placement and angle for the duct relative to the rotor disk, as well as the optimal coefficient of thrust for the rotor. It was determined that the optimal coefficient of thrust is similar to an open rotor in spite of the fact that the local flow velocity is modified by the duct. The optimal angle of attack of the duct was much larger than the separation angle of attack of the airfoil in a freestream. Large angles of attack did not induce separation on the duct because the expansion caused by the rotor disk helped keep the flow attached. For the same rotor area, the power output of the largest DWT was 66% greater than an open rotor. For the same total cross-sectional area of the entire device, the DWT also outperformed an open rotor, exceeding Betz's limit by a small margin.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDucted Wind Turbine Optimization
    typeJournal Paper
    journal volume140
    journal issue1
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4037741
    journal fristpage11005
    journal lastpage011005-8
    treeJournal of Solar Energy Engineering:;2018:;volume( 140 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian