YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design and Development of a Fiber-Optic Hybrid Day-Lighting System

    Source: Journal of Solar Energy Engineering:;2018:;volume( 140 ):;issue: 002::page 21012
    Author:
    Lawless, Sean
    ,
    Gorthala, Ravi
    DOI: 10.1115/1.4039024
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The primary objective of this study was to develop a fiber-optic hybrid day-lighting system for mobile application such as military shelters in order to cut energy use and the use of fossil fuels. The scope included the design, development, and testing of a hybrid lighting system that is capable of producing about 16,000 lm output with design challenges including light-weight, compactness, and optics that can tolerate a high tracking misalignment. The designed system is comprised of two subsystems: the solar collector and the solar hybrid lighting fixture (SHLF). The solar collector, consists of a housing, a structural stand (tripod), a dual axis tracking system, Fresnel lenses, secondary optics, and fiber-optic cables. The collector is a telescoping aluminum box that holds eight 10-in diameter Fresnel lenses, which focus sunlight onto eight secondary optics and deliver uniform light to the fiber-optic cables. The secondary optics have filters to block UV/IR. The optics has been designed to have a high half-acceptance angle of 1.75 deg and can accommodate a tracking accuracy of 1.50 deg or better. This novel SHLF consists of two components: a solar fiber-optic system and a light emitting diode (LED) system. The fiber-optic cable is coupled to an acrylic light diffusing rod that delivers the sunlight into the room. During sunny periods, the solar fiber-optic lighting could provide full illumination level. In order to keep the same level of lighting during cloudy periods, the LED portion of the light fixture can supplement the output of the SHLF. A compact, light-weight prototype system was built and tested. The results showed that the system's output per lens for the 20 ft cable was about 1750±50 lm at a global solar illuminance of 115,000 lx. The total system was capable of delivering 14,000 lm of sunlight.
    • Download: (4.645Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design and Development of a Fiber-Optic Hybrid Day-Lighting System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252917
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorLawless, Sean
    contributor authorGorthala, Ravi
    date accessioned2019-02-28T11:07:22Z
    date available2019-02-28T11:07:22Z
    date copyright2/20/2018 12:00:00 AM
    date issued2018
    identifier issn0199-6231
    identifier othersol_140_02_021012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252917
    description abstractThe primary objective of this study was to develop a fiber-optic hybrid day-lighting system for mobile application such as military shelters in order to cut energy use and the use of fossil fuels. The scope included the design, development, and testing of a hybrid lighting system that is capable of producing about 16,000 lm output with design challenges including light-weight, compactness, and optics that can tolerate a high tracking misalignment. The designed system is comprised of two subsystems: the solar collector and the solar hybrid lighting fixture (SHLF). The solar collector, consists of a housing, a structural stand (tripod), a dual axis tracking system, Fresnel lenses, secondary optics, and fiber-optic cables. The collector is a telescoping aluminum box that holds eight 10-in diameter Fresnel lenses, which focus sunlight onto eight secondary optics and deliver uniform light to the fiber-optic cables. The secondary optics have filters to block UV/IR. The optics has been designed to have a high half-acceptance angle of 1.75 deg and can accommodate a tracking accuracy of 1.50 deg or better. This novel SHLF consists of two components: a solar fiber-optic system and a light emitting diode (LED) system. The fiber-optic cable is coupled to an acrylic light diffusing rod that delivers the sunlight into the room. During sunny periods, the solar fiber-optic lighting could provide full illumination level. In order to keep the same level of lighting during cloudy periods, the LED portion of the light fixture can supplement the output of the SHLF. A compact, light-weight prototype system was built and tested. The results showed that the system's output per lens for the 20 ft cable was about 1750±50 lm at a global solar illuminance of 115,000 lx. The total system was capable of delivering 14,000 lm of sunlight.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign and Development of a Fiber-Optic Hybrid Day-Lighting System
    typeJournal Paper
    journal volume140
    journal issue2
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4039024
    journal fristpage21012
    journal lastpage021012-8
    treeJournal of Solar Energy Engineering:;2018:;volume( 140 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian