YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparative Analysis on Traumatic Brain Injury Risk Due to Primary and Secondary Impacts in a Pedestrian Sideswipe Accident

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering:;2018:;volume( 004 ):;issue:004::page 41004
    Author:
    Tamura, Atsutaka
    ,
    Hasegawa, Junji
    ,
    Koide, Takao
    DOI: 10.1115/1.4039464
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A series of pedestrian sideswipe impacts were computationally reconstructed; a fast-walking pedestrian was collided laterally with the side of a moving vehicle at 25 km/h or 40 km/h, which resulted in rotating the pedestrian's body axially. Potential severity of traumatic brain injury (TBI) was assessed using linear and rotational acceleration pulses applied to the head and by measuring intracranial brain tissue deformation. We found that TBI risk due to secondary head strike with the ground can be much greater than that due to primary head strike with the vehicle. Further, an “effective” head mass, meff, was computed based upon the impulse and vertical velocity change involved in the secondary head strike, which mostly exceeded the mass of the adult head-form impactor (4.5 kg) commonly used for a current regulatory impact test for pedestrian safety assessment. Our results demonstrated that a sport utility vehicle (SUV) is more aggressive than a sedan due to the differences in frontal shape. Additionally, it was highlighted that a striking vehicle velocity should be lower than 25 km/h at the moment of impact to exclude the potential risk of sustaining TBI, which would be mitigated by actively controlling meff, because meff is closely associated with a rotational acceleration pulse applied to the head involved in the final event of ground contact.
    • Download: (2.566Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparative Analysis on Traumatic Brain Injury Risk Due to Primary and Secondary Impacts in a Pedestrian Sideswipe Accident

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252420
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorTamura, Atsutaka
    contributor authorHasegawa, Junji
    contributor authorKoide, Takao
    date accessioned2019-02-28T11:04:38Z
    date available2019-02-28T11:04:38Z
    date copyright4/30/2018 12:00:00 AM
    date issued2018
    identifier issn2332-9017
    identifier otherrisk_004_04_041004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252420
    description abstractA series of pedestrian sideswipe impacts were computationally reconstructed; a fast-walking pedestrian was collided laterally with the side of a moving vehicle at 25 km/h or 40 km/h, which resulted in rotating the pedestrian's body axially. Potential severity of traumatic brain injury (TBI) was assessed using linear and rotational acceleration pulses applied to the head and by measuring intracranial brain tissue deformation. We found that TBI risk due to secondary head strike with the ground can be much greater than that due to primary head strike with the vehicle. Further, an “effective” head mass, meff, was computed based upon the impulse and vertical velocity change involved in the secondary head strike, which mostly exceeded the mass of the adult head-form impactor (4.5 kg) commonly used for a current regulatory impact test for pedestrian safety assessment. Our results demonstrated that a sport utility vehicle (SUV) is more aggressive than a sedan due to the differences in frontal shape. Additionally, it was highlighted that a striking vehicle velocity should be lower than 25 km/h at the moment of impact to exclude the potential risk of sustaining TBI, which would be mitigated by actively controlling meff, because meff is closely associated with a rotational acceleration pulse applied to the head involved in the final event of ground contact.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComparative Analysis on Traumatic Brain Injury Risk Due to Primary and Secondary Impacts in a Pedestrian Sideswipe Accident
    typeJournal Paper
    journal volume4
    journal issue4
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    identifier doi10.1115/1.4039464
    journal fristpage41004
    journal lastpage041004-7
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering:;2018:;volume( 004 ):;issue:004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian