YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Experimental Study on Strain Hardening of Amorphous Thermosets: Effect of Temperature, Strain Rate, and Network Density

    Source: Journal of Applied Mechanics:;2018:;volume( 085 ):;issue: 010::page 101012
    Author:
    Tian, Chuanshuai
    ,
    Xiao, Rui
    ,
    Guo, Jun
    DOI: 10.1115/1.4040692
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, we present an experimental study on strain hardening of amorphous thermosets. A series of amorphous polymers is synthesized with similar glass transition regions and different network densities. Uniaxial compression tests are then performed at two different strain rates spanning the glass transition region. The results show that a more pronounced hardening response can be observed as decreasing temperature and increasing strain rate and network density. We also use the Neo-Hookean model and Arruda–Boyce model to fit strain hardening responses. The Neo-Hookean model can only describe strain hardening of the lightly cross-linked polymers, while the Arruda–Boyce model can well describe hardening behaviors of all amorphous networks. The locking stretch of the Arruda–Boyce model decreases significantly with increasing network density. However, for each amorphous network, the locking stretch is the same regardless of the deformation temperature and rate. The hardening modulus exhibits a sharp transition with temperature. The transition behaviors of hardening modulus also vary with the network density. For lightly crosslinked networks, the hardening modulus changes 60 times with temperature. In contrast, for heavily crosslinked polymers, the hardening modulus in the glassy state is only 2 times of that in the rubbery state. Different from the results from molecular dynamic simulation in literatures, the hardening modulus of polymers in the glassy state does not necessarily increase with network density. Rather, the more significant hardening behaviors in more heavily crosslinked polymers are attributed to a lower value of the stretch limit.
    • Download: (1.761Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Experimental Study on Strain Hardening of Amorphous Thermosets: Effect of Temperature, Strain Rate, and Network Density

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252310
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorTian, Chuanshuai
    contributor authorXiao, Rui
    contributor authorGuo, Jun
    date accessioned2019-02-28T11:04:05Z
    date available2019-02-28T11:04:05Z
    date copyright7/17/2018 12:00:00 AM
    date issued2018
    identifier issn0021-8936
    identifier otherjam_085_10_101012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252310
    description abstractIn this paper, we present an experimental study on strain hardening of amorphous thermosets. A series of amorphous polymers is synthesized with similar glass transition regions and different network densities. Uniaxial compression tests are then performed at two different strain rates spanning the glass transition region. The results show that a more pronounced hardening response can be observed as decreasing temperature and increasing strain rate and network density. We also use the Neo-Hookean model and Arruda–Boyce model to fit strain hardening responses. The Neo-Hookean model can only describe strain hardening of the lightly cross-linked polymers, while the Arruda–Boyce model can well describe hardening behaviors of all amorphous networks. The locking stretch of the Arruda–Boyce model decreases significantly with increasing network density. However, for each amorphous network, the locking stretch is the same regardless of the deformation temperature and rate. The hardening modulus exhibits a sharp transition with temperature. The transition behaviors of hardening modulus also vary with the network density. For lightly crosslinked networks, the hardening modulus changes 60 times with temperature. In contrast, for heavily crosslinked polymers, the hardening modulus in the glassy state is only 2 times of that in the rubbery state. Different from the results from molecular dynamic simulation in literatures, the hardening modulus of polymers in the glassy state does not necessarily increase with network density. Rather, the more significant hardening behaviors in more heavily crosslinked polymers are attributed to a lower value of the stretch limit.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Experimental Study on Strain Hardening of Amorphous Thermosets: Effect of Temperature, Strain Rate, and Network Density
    typeJournal Paper
    journal volume85
    journal issue10
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4040692
    journal fristpage101012
    journal lastpage101012-8
    treeJournal of Applied Mechanics:;2018:;volume( 085 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian