YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Learning From the Past: Uncovering Design Process Models Using an Enriched Process Mining

    Source: Journal of Mechanical Design:;2018:;volume( 140 ):;issue: 004::page 41403
    Author:
    Lan, Lijun
    ,
    Liu, Ying
    ,
    Feng Lu, Wen
    DOI: 10.1115/1.4039200
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Design documents and design project footprints accumulated by corporate information technology systems have increasingly become valuable sources of evidence for design information and knowledge management. Identification and extraction of such embedded information and knowledge into a clear and usable format will greatly accelerate continuous learning from past design efforts for competitive product innovation and efficient design process management in future design projects. Most of the existing design information extraction systems focus on either organizing design documents for efficient retrieval or extracting relevant product information for product optimization. Different from traditional systems, this paper proposes a methodology of learning and extracting useful knowledge using past design project documents from design process perspective based on process mining techniques. Particularly different from conventional techniques that deal with timestamps or event logs only, a new process mining approach that is able to directly process textual data is proposed at the first stage of the proposed methodology. The outcome is a hierarchical process model that reveals the actual design process hidden behind a large amount of design documents and enables the connection of various design information from different perspectives. At the second stage, the discovered process model is analyzed to extract multifaceted knowledge patterns by applying a number of statistical analysis methods. The outcomes range from task dependency study from workflow analysis, identification of irregular task execution from performance analysis, cooperation pattern discovery from social net analysis to evaluation of personal contribution based on role analysis. Relying on the knowledge patterns extracted, lessons and best practices can be uncovered which offer great support to decision makers in managing any future design initiatives. The proposed methodology was tested using an email dataset from a university-hosted multiyear multidisciplinary design project.
    • Download: (4.852Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Learning From the Past: Uncovering Design Process Models Using an Enriched Process Mining

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252216
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorLan, Lijun
    contributor authorLiu, Ying
    contributor authorFeng Lu, Wen
    date accessioned2019-02-28T11:03:35Z
    date available2019-02-28T11:03:35Z
    date copyright2/27/2018 12:00:00 AM
    date issued2018
    identifier issn1050-0472
    identifier othermd_140_04_041403.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252216
    description abstractDesign documents and design project footprints accumulated by corporate information technology systems have increasingly become valuable sources of evidence for design information and knowledge management. Identification and extraction of such embedded information and knowledge into a clear and usable format will greatly accelerate continuous learning from past design efforts for competitive product innovation and efficient design process management in future design projects. Most of the existing design information extraction systems focus on either organizing design documents for efficient retrieval or extracting relevant product information for product optimization. Different from traditional systems, this paper proposes a methodology of learning and extracting useful knowledge using past design project documents from design process perspective based on process mining techniques. Particularly different from conventional techniques that deal with timestamps or event logs only, a new process mining approach that is able to directly process textual data is proposed at the first stage of the proposed methodology. The outcome is a hierarchical process model that reveals the actual design process hidden behind a large amount of design documents and enables the connection of various design information from different perspectives. At the second stage, the discovered process model is analyzed to extract multifaceted knowledge patterns by applying a number of statistical analysis methods. The outcomes range from task dependency study from workflow analysis, identification of irregular task execution from performance analysis, cooperation pattern discovery from social net analysis to evaluation of personal contribution based on role analysis. Relying on the knowledge patterns extracted, lessons and best practices can be uncovered which offer great support to decision makers in managing any future design initiatives. The proposed methodology was tested using an email dataset from a university-hosted multiyear multidisciplinary design project.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLearning From the Past: Uncovering Design Process Models Using an Enriched Process Mining
    typeJournal Paper
    journal volume140
    journal issue4
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4039200
    journal fristpage41403
    journal lastpage041403-13
    treeJournal of Mechanical Design:;2018:;volume( 140 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian