YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Two Possible Defect Growth Modes in Soft Solids

    Source: Journal of Applied Mechanics:;2018:;volume( 085 ):;issue: 003::page 31001
    Author:
    Pourmodheji, Reza
    ,
    Qu, Shaoxing
    ,
    Yu, Honghui
    DOI: 10.1115/1.4038718
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Guided by the experimental observations in the literature, this paper discusses two possible modes of defect growth in soft solids for which the size-dependent fracture mechanics is not always applicable. One is omni-directional growth, in which the cavity expands irreversibly in all directions; and the other is localized cracking along a plane. A characteristic material length is introduced, which may shed light on the dominant growth mode for defects of different sizes. To help determine the associated material properties from experimental measurement, the driving force of defect growth as a function of the remote load is calculated for both modes accordingly. Consequently, one may relate the measured critical load to the critical driving force and eventually to the associated material parameters. For comprehensiveness, the calculations here cover a class of hyperelastic materials. As an application of the proposed hypothesis, the experimental results (Cristiano et al., 2010, “An Experimental Investigation of Fracture by Cavitation of Model Elastomeric Networks,” J. Polym. Sci. Part B: Polym. Phys., 48(13), pp. 1409–1422) from two polymers with long and short chain elastomeric network are examined. The two polymers seem to be susceptible to either of the two dominating modes, respectively. The results are interpreted, and the material characteristic length and other growth parameters are determined.
    • Download: (695.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Two Possible Defect Growth Modes in Soft Solids

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251942
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorPourmodheji, Reza
    contributor authorQu, Shaoxing
    contributor authorYu, Honghui
    date accessioned2019-02-28T11:02:05Z
    date available2019-02-28T11:02:05Z
    date copyright12/26/2017 12:00:00 AM
    date issued2018
    identifier issn0021-8936
    identifier otherjam_085_03_031001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251942
    description abstractGuided by the experimental observations in the literature, this paper discusses two possible modes of defect growth in soft solids for which the size-dependent fracture mechanics is not always applicable. One is omni-directional growth, in which the cavity expands irreversibly in all directions; and the other is localized cracking along a plane. A characteristic material length is introduced, which may shed light on the dominant growth mode for defects of different sizes. To help determine the associated material properties from experimental measurement, the driving force of defect growth as a function of the remote load is calculated for both modes accordingly. Consequently, one may relate the measured critical load to the critical driving force and eventually to the associated material parameters. For comprehensiveness, the calculations here cover a class of hyperelastic materials. As an application of the proposed hypothesis, the experimental results (Cristiano et al., 2010, “An Experimental Investigation of Fracture by Cavitation of Model Elastomeric Networks,” J. Polym. Sci. Part B: Polym. Phys., 48(13), pp. 1409–1422) from two polymers with long and short chain elastomeric network are examined. The two polymers seem to be susceptible to either of the two dominating modes, respectively. The results are interpreted, and the material characteristic length and other growth parameters are determined.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTwo Possible Defect Growth Modes in Soft Solids
    typeJournal Paper
    journal volume85
    journal issue3
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4038718
    journal fristpage31001
    journal lastpage031001-10
    treeJournal of Applied Mechanics:;2018:;volume( 085 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian