YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper

    Source: Journal of Heat Transfer:;2018:;volume( 140 ):;issue: 011::page 113001
    Author:
    Han, Je-Chin
    DOI: 10.1115/1.4039644
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Gas turbines have been extensively used for aircraft engine propulsion, land-based power generation, and industrial applications. Power output and thermal efficiency of gas turbines increase with increasing turbine rotor inlet temperatures (RIT). Currently, advanced gas turbines operate at turbine RIT around 1700 °C far higher than the yielding point of the blade material temperature about 1200 °C. Therefore, turbine rotor blades need to be cooled by 3–5% of high-pressure compressor air around 700 °C. To design an efficient turbine blade cooling system, it is critical to have a thorough understanding of gas turbine heat transfer characteristics within complex three-dimensional (3D) unsteady high-turbulence flow conditions. Moreover, recent research trend focuses on aircraft gas turbines that operate at even higher RIT up to 2000 °C with a limited amount of cooling air, and land-based power generation gas turbines (including 300–400 MW combined cycles with 60% efficiency) burn alternative syngas fuels with higher heat load to turbine components. It is important to understand gas turbine heat transfer problems with efficient cooling strategies under new harsh working environments. Advanced cooling technology and durable thermal barrier coatings (TBCs) play most critical roles for development of new-generation high-efficiency gas turbines with near-zero emissions for safe and long-life operation. This paper reviews basic gas turbine heat transfer issues with advanced cooling technologies and documents important relevant papers for future research references.
    • Download: (5.450Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251713
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorHan, Je-Chin
    date accessioned2019-02-28T11:00:45Z
    date available2019-02-28T11:00:45Z
    date copyright7/23/2018 12:00:00 AM
    date issued2018
    identifier issn0022-1481
    identifier otherht_140_11_113001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251713
    description abstractGas turbines have been extensively used for aircraft engine propulsion, land-based power generation, and industrial applications. Power output and thermal efficiency of gas turbines increase with increasing turbine rotor inlet temperatures (RIT). Currently, advanced gas turbines operate at turbine RIT around 1700 °C far higher than the yielding point of the blade material temperature about 1200 °C. Therefore, turbine rotor blades need to be cooled by 3–5% of high-pressure compressor air around 700 °C. To design an efficient turbine blade cooling system, it is critical to have a thorough understanding of gas turbine heat transfer characteristics within complex three-dimensional (3D) unsteady high-turbulence flow conditions. Moreover, recent research trend focuses on aircraft gas turbines that operate at even higher RIT up to 2000 °C with a limited amount of cooling air, and land-based power generation gas turbines (including 300–400 MW combined cycles with 60% efficiency) burn alternative syngas fuels with higher heat load to turbine components. It is important to understand gas turbine heat transfer problems with efficient cooling strategies under new harsh working environments. Advanced cooling technology and durable thermal barrier coatings (TBCs) play most critical roles for development of new-generation high-efficiency gas turbines with near-zero emissions for safe and long-life operation. This paper reviews basic gas turbine heat transfer issues with advanced cooling technologies and documents important relevant papers for future research references.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAdvanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
    typeJournal Paper
    journal volume140
    journal issue11
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4039644
    journal fristpage113001
    journal lastpage113001-20
    treeJournal of Heat Transfer:;2018:;volume( 140 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian