Show simple item record

contributor authorHan, Je-Chin
date accessioned2019-02-28T11:00:45Z
date available2019-02-28T11:00:45Z
date copyright7/23/2018 12:00:00 AM
date issued2018
identifier issn0022-1481
identifier otherht_140_11_113001.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251713
description abstractGas turbines have been extensively used for aircraft engine propulsion, land-based power generation, and industrial applications. Power output and thermal efficiency of gas turbines increase with increasing turbine rotor inlet temperatures (RIT). Currently, advanced gas turbines operate at turbine RIT around 1700 °C far higher than the yielding point of the blade material temperature about 1200 °C. Therefore, turbine rotor blades need to be cooled by 3–5% of high-pressure compressor air around 700 °C. To design an efficient turbine blade cooling system, it is critical to have a thorough understanding of gas turbine heat transfer characteristics within complex three-dimensional (3D) unsteady high-turbulence flow conditions. Moreover, recent research trend focuses on aircraft gas turbines that operate at even higher RIT up to 2000 °C with a limited amount of cooling air, and land-based power generation gas turbines (including 300–400 MW combined cycles with 60% efficiency) burn alternative syngas fuels with higher heat load to turbine components. It is important to understand gas turbine heat transfer problems with efficient cooling strategies under new harsh working environments. Advanced cooling technology and durable thermal barrier coatings (TBCs) play most critical roles for development of new-generation high-efficiency gas turbines with near-zero emissions for safe and long-life operation. This paper reviews basic gas turbine heat transfer issues with advanced cooling technologies and documents important relevant papers for future research references.
publisherThe American Society of Mechanical Engineers (ASME)
titleAdvanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
typeJournal Paper
journal volume140
journal issue11
journal titleJournal of Heat Transfer
identifier doi10.1115/1.4039644
journal fristpage113001
journal lastpage113001-20
treeJournal of Heat Transfer:;2018:;volume( 140 ):;issue: 011
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record