YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fracture of Elastomeric Materials by Crosslink Failure

    Source: Journal of Applied Mechanics:;2018:;volume( 085 ):;issue: 008::page 81008
    Author:
    Mao, Yunwei
    ,
    Anand, Lallit
    DOI: 10.1115/1.4040100
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: If an elastomeric material is subjected to sufficiently large deformations, it eventually fractures. There are two typical micromechanisms of failure in such materials: chain scission and crosslink failure. The chain scission failure mode is mainly observed in polymers with strong covalent crosslinks, while the crosslink failure mode is observed in polymers with weak crosslinks. In two recent papers, we have proposed a theory for progressive damage and rupture of polymers with strong covalent crosslinks. In this paper, we extend our previous framework and formulate a theory for modeling failure of elastomeric materials with weak crosslinks. We first introduce a model for the deformation of a single chain with weak crosslinks at each of its two ends using statistical mechanics arguments, and then upscale the model from a single chain to the continuum level for a polymer network. Finally, we introduce a damage variable to describe the progressive damage and failure of polymer networks. A central feature of our theory is the recognition that the free energy of elastomers is not entirely entropic in nature; there is also an energetic contribution from the deformation of the backbone bonds in a chain and/or the crosslinks. For polymers with weak crosslinks, this energetic contribution is mainly from the deformation of the crosslinks. It is this energetic part of the free energy which is the driving force for progressive damage and fracture of elastomeric materials. Moreover, we show that for elastomeric materials in which fracture occurs by crosslink stretching and scission, the classical Lake–Thomas scaling—that the toughness Gc of an elastomeric material is proportional to 1/G0, with G0=NkBϑ the ground-state shear modulus of the material—does not hold. A new scaling is proposed, and some important consequences of this scaling are remarked upon.
    • Download: (2.172Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fracture of Elastomeric Materials by Crosslink Failure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251598
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorMao, Yunwei
    contributor authorAnand, Lallit
    date accessioned2019-02-28T11:00:06Z
    date available2019-02-28T11:00:06Z
    date copyright6/4/2018 12:00:00 AM
    date issued2018
    identifier issn0021-8936
    identifier otherjam_085_08_081008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251598
    description abstractIf an elastomeric material is subjected to sufficiently large deformations, it eventually fractures. There are two typical micromechanisms of failure in such materials: chain scission and crosslink failure. The chain scission failure mode is mainly observed in polymers with strong covalent crosslinks, while the crosslink failure mode is observed in polymers with weak crosslinks. In two recent papers, we have proposed a theory for progressive damage and rupture of polymers with strong covalent crosslinks. In this paper, we extend our previous framework and formulate a theory for modeling failure of elastomeric materials with weak crosslinks. We first introduce a model for the deformation of a single chain with weak crosslinks at each of its two ends using statistical mechanics arguments, and then upscale the model from a single chain to the continuum level for a polymer network. Finally, we introduce a damage variable to describe the progressive damage and failure of polymer networks. A central feature of our theory is the recognition that the free energy of elastomers is not entirely entropic in nature; there is also an energetic contribution from the deformation of the backbone bonds in a chain and/or the crosslinks. For polymers with weak crosslinks, this energetic contribution is mainly from the deformation of the crosslinks. It is this energetic part of the free energy which is the driving force for progressive damage and fracture of elastomeric materials. Moreover, we show that for elastomeric materials in which fracture occurs by crosslink stretching and scission, the classical Lake–Thomas scaling—that the toughness Gc of an elastomeric material is proportional to 1/G0, with G0=NkBϑ the ground-state shear modulus of the material—does not hold. A new scaling is proposed, and some important consequences of this scaling are remarked upon.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFracture of Elastomeric Materials by Crosslink Failure
    typeJournal Paper
    journal volume85
    journal issue8
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4040100
    journal fristpage81008
    journal lastpage081008-14
    treeJournal of Applied Mechanics:;2018:;volume( 085 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian