YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Uncertainty Quantification of NOx Emission Due to Operating Conditions and Chemical Kinetic Parameters in a Premixed Burner

    Source: Journal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 012::page 121005
    Author:
    Yousefian, Sajjad
    ,
    Bourque, Gilles
    ,
    Monaghan, Rory F. D.
    DOI: 10.1115/1.4040897
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Many sources of uncertainty exist when emissions are modeled for a gas turbine combustion system. They originate from uncertain inputs, boundary conditions, calibration, or lack of sufficient fidelity in a model. In this paper, a nonintrusive polynomial chaos expansion (NIPCE) method is coupled with a chemical reactor network (CRN) model using Python to quantify uncertainties of NOx emission in a premixed burner. The first objective of uncertainty quantification (UQ) in this study is development of a global sensitivity analysis method based on the NIPCE method to capture aleatory uncertainty on NOx emission due to variation of operating conditions. The second objective is uncertainty analysis (UA) of NOx emission due to uncertain Arrhenius parameters in a chemical kinetic mechanism to study epistemic uncertainty in emission modeling. A two-reactor CRN consisting of a perfectly stirred reactor (PSR) and a plug flow reactor (PFR) is constructed in this study using Cantera to model NOx emission in a benchmark premixed burner under gas turbine operating conditions. The results of uncertainty and sensitivity analysis (SA) using NIPCE based on point collocation method (PCM) are then compared with the results of advanced Monte Carlo simulation (MCS). A set of surrogate models is also developed based on the NIPCE approach and compared with the forward model in Cantera to predict NOx emissions. The results show the capability of NIPCE approach for UQ using a limited number of evaluations to develop a UQ-enabled emission prediction tool for gas turbine combustion systems.
    • Download: (1.900Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Uncertainty Quantification of NOx Emission Due to Operating Conditions and Chemical Kinetic Parameters in a Premixed Burner

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251372
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorYousefian, Sajjad
    contributor authorBourque, Gilles
    contributor authorMonaghan, Rory F. D.
    date accessioned2019-02-28T10:58:46Z
    date available2019-02-28T10:58:46Z
    date copyright10/1/2018 12:00:00 AM
    date issued2018
    identifier issn0742-4795
    identifier othergtp_140_12_121005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251372
    description abstractMany sources of uncertainty exist when emissions are modeled for a gas turbine combustion system. They originate from uncertain inputs, boundary conditions, calibration, or lack of sufficient fidelity in a model. In this paper, a nonintrusive polynomial chaos expansion (NIPCE) method is coupled with a chemical reactor network (CRN) model using Python to quantify uncertainties of NOx emission in a premixed burner. The first objective of uncertainty quantification (UQ) in this study is development of a global sensitivity analysis method based on the NIPCE method to capture aleatory uncertainty on NOx emission due to variation of operating conditions. The second objective is uncertainty analysis (UA) of NOx emission due to uncertain Arrhenius parameters in a chemical kinetic mechanism to study epistemic uncertainty in emission modeling. A two-reactor CRN consisting of a perfectly stirred reactor (PSR) and a plug flow reactor (PFR) is constructed in this study using Cantera to model NOx emission in a benchmark premixed burner under gas turbine operating conditions. The results of uncertainty and sensitivity analysis (SA) using NIPCE based on point collocation method (PCM) are then compared with the results of advanced Monte Carlo simulation (MCS). A set of surrogate models is also developed based on the NIPCE approach and compared with the forward model in Cantera to predict NOx emissions. The results show the capability of NIPCE approach for UQ using a limited number of evaluations to develop a UQ-enabled emission prediction tool for gas turbine combustion systems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUncertainty Quantification of NOx Emission Due to Operating Conditions and Chemical Kinetic Parameters in a Premixed Burner
    typeJournal Paper
    journal volume140
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4040897
    journal fristpage121005
    journal lastpage121005-11
    treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian