YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigation on Mixture Formation in a Turbocharged Port-Injection Natural Gas Engine Using Multiple Cycle Simulation

    Source: Journal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 005::page 51704
    Author:
    Wu, Zhenkuo
    ,
    Han, Zhiyu
    DOI: 10.1115/1.4039106
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In the present study, multidimensional computational fluid dynamics (CFD) simulations were carried out to study mixture formation in a turbocharged port-injection natural gas engine. In order to achieve robust simulation results, multiple cycle simulation was employed to remove the inaccuracies of initial conditions setting. First, the minimal number of simulation cycles required to obtain convergent cycle-to-cycle results was determined. Based on this, the in-cylinder mixture preparation for three typical operating conditions was studied. The effects of fuel injection timing and intake valve open scheme on the mixture formation were evaluated. The results demonstrated that three simulation cycles are needed to achieve convergence of the results for the present study. The analysis of the mixture preparation revealed that only in the initial phase of the intake stroke, there is an obvious difference between the three operating conditions. At the spark timing, for 5500 rpm, full load condition mixture composition throughout the cylinder is flammable, and for 2000 rpm, 2 bar operating condition part of the mixture is lean and nonflammable. The fuel injection timing has an insignificant impact on the mixture flammability at the spark timing. It was observed that the designed nonsynchronous intake valve open scheme has stronger swirl and x-direction tumble motion than the baseline case, leading to better mixture homogeneity and spatial distribution. With an increase in volumetric efficiency, particularly at 2000 rpm, full load condition, by 4.85% compared to the baseline, which is in line with experimental observation.
    • Download: (4.689Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigation on Mixture Formation in a Turbocharged Port-Injection Natural Gas Engine Using Multiple Cycle Simulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251363
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorWu, Zhenkuo
    contributor authorHan, Zhiyu
    date accessioned2019-02-28T10:58:43Z
    date available2019-02-28T10:58:43Z
    date copyright3/14/2018 12:00:00 AM
    date issued2018
    identifier issn0742-4795
    identifier othergtp_140_05_051704.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251363
    description abstractIn the present study, multidimensional computational fluid dynamics (CFD) simulations were carried out to study mixture formation in a turbocharged port-injection natural gas engine. In order to achieve robust simulation results, multiple cycle simulation was employed to remove the inaccuracies of initial conditions setting. First, the minimal number of simulation cycles required to obtain convergent cycle-to-cycle results was determined. Based on this, the in-cylinder mixture preparation for three typical operating conditions was studied. The effects of fuel injection timing and intake valve open scheme on the mixture formation were evaluated. The results demonstrated that three simulation cycles are needed to achieve convergence of the results for the present study. The analysis of the mixture preparation revealed that only in the initial phase of the intake stroke, there is an obvious difference between the three operating conditions. At the spark timing, for 5500 rpm, full load condition mixture composition throughout the cylinder is flammable, and for 2000 rpm, 2 bar operating condition part of the mixture is lean and nonflammable. The fuel injection timing has an insignificant impact on the mixture flammability at the spark timing. It was observed that the designed nonsynchronous intake valve open scheme has stronger swirl and x-direction tumble motion than the baseline case, leading to better mixture homogeneity and spatial distribution. With an increase in volumetric efficiency, particularly at 2000 rpm, full load condition, by 4.85% compared to the baseline, which is in line with experimental observation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigation on Mixture Formation in a Turbocharged Port-Injection Natural Gas Engine Using Multiple Cycle Simulation
    typeJournal Paper
    journal volume140
    journal issue5
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4039106
    journal fristpage51704
    journal lastpage051704-10
    treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian