YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Leakage, Drag Power, and Rotordynamic Force Coefficients of an Air in Oil (Wet) Annular Seal

    Source: Journal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 001::page 12505
    Author:
    San Andrés, Luis
    ,
    Lu, Xueliang
    DOI: 10.1115/1.4037622
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Wet gas compression systems and multiphase pumps are enabling technologies for the deep sea oil and gas industry. This extreme environment determines both machine types have to handle mixtures with a gas in liquid volume fraction (GVF) varying over a wide range (0–1). The gas (or liquid) content affects the system pumping (or compression) efficiency and reliability, and places a penalty in leakage and rotordynamic performance in secondary flow components, namely seals. In 2015, tests were conducted with a short length smooth surface annular seal (L/D = 0.36, radial clearance = 0.127 mm) operating with an oil in air mixture whose liquid volume fraction (LVF) varied to 4%. The test results with a stationary journal show the dramatic effect of a few droplets of liquid on the production of large damping coefficients. This paper presents further measurements and predictions of leakage, drag power, and rotordynamic force coefficients conducted with the same test seal and a rotating journal. The seal is supplied with a mixture (air in ISO VG 10 oil), varying from a pure liquid to an inlet GVF = 0.9 (mostly gas), a typical range in multiphase pumps. For operation with a supply pressure (Ps) up to 3.5 bar(a), discharge pressure (Pa) = 1 bar(a), and various shaft speed (Ω) to 3.5 krpm (ΩR = 23.3 m/s), the flow is laminar with either a pure oil or a mixture. As the inlet GVF increases to 0.9 the mass flow rate and drag power decrease monotonically by 25% and 85% when compared to the pure liquid case, respectively. For operation with Ps = 2.5 bar(a) and Ω to 3.5 krpm, dynamic load tests with frequency 0 < ω < 110 Hz are conducted to procure rotordynamic force coefficients. A direct stiffness (K), an added mass (M), and a viscous damping coefficient (C) represent well the seal lubricated with a pure oil. For tests with a mixture (GVFmax = 0.9), the seal dynamic complex stiffness Re(H) increases with whirl frequency (ω); that is, Re(H) differs from (K−ω2M). Both the seal cross coupled stiffnesses (KXY and −KYX) and direct damping coefficients (CXX and CYY) decrease by approximately 75% as the inlet GVF increases to 0.9. The finding reveals that the frequency at which the effective damping coefficient (CXXeff = CXX − KXY/ω) changes from negative to positive (i.e., a crossover frequency) drops from 50% of the rotor speed (ω = 1/2 Ω) for a seal with pure oil to a lesser magnitude for operation with a mixture. Predictions for leakage and drag power based on a homogeneous bulk flow model match well the test data for operation with inlet GVF up to 0.9. Predicted force coefficients correlate well with the test data for mixtures with GVF up to 0.6. For a mixture with a larger GVF, the model under predicts the direct damping coefficients by as much as 40%. The tests also reveal the appearance of a self-excited seal motion with a low frequency; its amplitude and broad band frequency (centered at around ∼12 Hz) persist and increase as the gas content in the mixture increase. The test results show that an accurate quantification of wet seals dynamic force response is necessary for the design of robust subsea flow assurance systems.
    • Download: (5.074Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Leakage, Drag Power, and Rotordynamic Force Coefficients of an Air in Oil (Wet) Annular Seal

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251296
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorSan Andrés, Luis
    contributor authorLu, Xueliang
    date accessioned2019-02-28T10:58:19Z
    date available2019-02-28T10:58:19Z
    date copyright9/19/2017 12:00:00 AM
    date issued2018
    identifier issn0742-4795
    identifier othergtp_140_01_012505.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251296
    description abstractWet gas compression systems and multiphase pumps are enabling technologies for the deep sea oil and gas industry. This extreme environment determines both machine types have to handle mixtures with a gas in liquid volume fraction (GVF) varying over a wide range (0–1). The gas (or liquid) content affects the system pumping (or compression) efficiency and reliability, and places a penalty in leakage and rotordynamic performance in secondary flow components, namely seals. In 2015, tests were conducted with a short length smooth surface annular seal (L/D = 0.36, radial clearance = 0.127 mm) operating with an oil in air mixture whose liquid volume fraction (LVF) varied to 4%. The test results with a stationary journal show the dramatic effect of a few droplets of liquid on the production of large damping coefficients. This paper presents further measurements and predictions of leakage, drag power, and rotordynamic force coefficients conducted with the same test seal and a rotating journal. The seal is supplied with a mixture (air in ISO VG 10 oil), varying from a pure liquid to an inlet GVF = 0.9 (mostly gas), a typical range in multiphase pumps. For operation with a supply pressure (Ps) up to 3.5 bar(a), discharge pressure (Pa) = 1 bar(a), and various shaft speed (Ω) to 3.5 krpm (ΩR = 23.3 m/s), the flow is laminar with either a pure oil or a mixture. As the inlet GVF increases to 0.9 the mass flow rate and drag power decrease monotonically by 25% and 85% when compared to the pure liquid case, respectively. For operation with Ps = 2.5 bar(a) and Ω to 3.5 krpm, dynamic load tests with frequency 0 < ω < 110 Hz are conducted to procure rotordynamic force coefficients. A direct stiffness (K), an added mass (M), and a viscous damping coefficient (C) represent well the seal lubricated with a pure oil. For tests with a mixture (GVFmax = 0.9), the seal dynamic complex stiffness Re(H) increases with whirl frequency (ω); that is, Re(H) differs from (K−ω2M). Both the seal cross coupled stiffnesses (KXY and −KYX) and direct damping coefficients (CXX and CYY) decrease by approximately 75% as the inlet GVF increases to 0.9. The finding reveals that the frequency at which the effective damping coefficient (CXXeff = CXX − KXY/ω) changes from negative to positive (i.e., a crossover frequency) drops from 50% of the rotor speed (ω = 1/2 Ω) for a seal with pure oil to a lesser magnitude for operation with a mixture. Predictions for leakage and drag power based on a homogeneous bulk flow model match well the test data for operation with inlet GVF up to 0.9. Predicted force coefficients correlate well with the test data for mixtures with GVF up to 0.6. For a mixture with a larger GVF, the model under predicts the direct damping coefficients by as much as 40%. The tests also reveal the appearance of a self-excited seal motion with a low frequency; its amplitude and broad band frequency (centered at around ∼12 Hz) persist and increase as the gas content in the mixture increase. The test results show that an accurate quantification of wet seals dynamic force response is necessary for the design of robust subsea flow assurance systems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLeakage, Drag Power, and Rotordynamic Force Coefficients of an Air in Oil (Wet) Annular Seal
    typeJournal Paper
    journal volume140
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4037622
    journal fristpage12505
    journal lastpage012505-11
    treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian