YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Catalytic Influence of Water Vapor on Lean Blow-Off and NOx Reduction for Pressurized Swirling Syngas Flames

    Source: Journal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 006::page 61502
    Author:
    Pugh, Daniel
    ,
    Bowen, Philip
    ,
    Crayford, Andrew
    ,
    Marsh, Richard
    ,
    Runyon, Jon
    ,
    Morris, Steven
    ,
    Giles, Anthony
    DOI: 10.1115/1.4038417
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: It has become increasingly cost-effective for the steel industry to invest in the capture of heavily carbonaceous basic oxygen furnace or converter gas, and use it to support the intensive energy demands of the integrated facility, or for surplus energy conversion in power plants. As industry strives for greater efficiency via ever more complex technologies, increased attention is being paid to investigate the complex behavior of by-product syngases. Recent studies have described and evidenced the enhancement of fundamental combustion parameters such as laminar flame speed due to the catalytic influence of H2O on heavily carbonaceous syngas mixtures. Direct formation of CO2 from CO is slow due to its high activation energy, and the presence of disassociated radical hydrogen facilitates chain branching species (such as OH), changing the dominant path for oxidation. The observed catalytic effect is nonmonotonic, with the reduction in flame temperature eventually prevailing, and overall reaction rate quenched. The potential benefits of changes in water loading are explored in terms of delayed lean blow-off (LBO), and primary emission reduction in a premixed turbulent swirling flame, scaled for practical relevance at conditions of elevated temperature (423 K) and pressure (0.1–0.3 MPa). Chemical kinetic models are used initially to characterize the influence that H2O has on the burning characteristics of the fuel blend employed, modeling laminar flame speed and extinction strain rate across an experimental range with H2O vapor fraction increased to eventually diminish the catalytic effect. These modeled predictions are used as a foundation to investigate the experimental flame. OH* chemiluminescence and OH planar laser-induced fluorescence (PLIF) are employed as optical diagnostic techniques to analyze changes in heat release structure resulting from the experimental variation in water loading. A comparison is made with a CH4/air flame and changes in LBO stability limits are quantified, measuring the incremental increase in air flow and again compared against chemical models. The compound benefit of CO and NOx reduction is quantified also, with production first decreasing due to the thermal effect of H2O addition from a reduction in flame temperature, coupled with the potential for further reduction from the change in lean stability limit. Power law correlations have been derived for change in pressure, and equivalent water loading. Hence, the catalytic effect of H2O on reaction pathways and reaction rate predicted and observed for laminar flames are appraised within the challenging environment of turbulent, swirl-stabilized flames at elevated temperature and pressure, characteristic of practical systems.
    • Download: (1.888Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Catalytic Influence of Water Vapor on Lean Blow-Off and NOx Reduction for Pressurized Swirling Syngas Flames

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251278
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorPugh, Daniel
    contributor authorBowen, Philip
    contributor authorCrayford, Andrew
    contributor authorMarsh, Richard
    contributor authorRunyon, Jon
    contributor authorMorris, Steven
    contributor authorGiles, Anthony
    date accessioned2019-02-28T10:58:12Z
    date available2019-02-28T10:58:12Z
    date copyright1/17/2018 12:00:00 AM
    date issued2018
    identifier issn0742-4795
    identifier othergtp_140_06_061502.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251278
    description abstractIt has become increasingly cost-effective for the steel industry to invest in the capture of heavily carbonaceous basic oxygen furnace or converter gas, and use it to support the intensive energy demands of the integrated facility, or for surplus energy conversion in power plants. As industry strives for greater efficiency via ever more complex technologies, increased attention is being paid to investigate the complex behavior of by-product syngases. Recent studies have described and evidenced the enhancement of fundamental combustion parameters such as laminar flame speed due to the catalytic influence of H2O on heavily carbonaceous syngas mixtures. Direct formation of CO2 from CO is slow due to its high activation energy, and the presence of disassociated radical hydrogen facilitates chain branching species (such as OH), changing the dominant path for oxidation. The observed catalytic effect is nonmonotonic, with the reduction in flame temperature eventually prevailing, and overall reaction rate quenched. The potential benefits of changes in water loading are explored in terms of delayed lean blow-off (LBO), and primary emission reduction in a premixed turbulent swirling flame, scaled for practical relevance at conditions of elevated temperature (423 K) and pressure (0.1–0.3 MPa). Chemical kinetic models are used initially to characterize the influence that H2O has on the burning characteristics of the fuel blend employed, modeling laminar flame speed and extinction strain rate across an experimental range with H2O vapor fraction increased to eventually diminish the catalytic effect. These modeled predictions are used as a foundation to investigate the experimental flame. OH* chemiluminescence and OH planar laser-induced fluorescence (PLIF) are employed as optical diagnostic techniques to analyze changes in heat release structure resulting from the experimental variation in water loading. A comparison is made with a CH4/air flame and changes in LBO stability limits are quantified, measuring the incremental increase in air flow and again compared against chemical models. The compound benefit of CO and NOx reduction is quantified also, with production first decreasing due to the thermal effect of H2O addition from a reduction in flame temperature, coupled with the potential for further reduction from the change in lean stability limit. Power law correlations have been derived for change in pressure, and equivalent water loading. Hence, the catalytic effect of H2O on reaction pathways and reaction rate predicted and observed for laminar flames are appraised within the challenging environment of turbulent, swirl-stabilized flames at elevated temperature and pressure, characteristic of practical systems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCatalytic Influence of Water Vapor on Lean Blow-Off and NOx Reduction for Pressurized Swirling Syngas Flames
    typeJournal Paper
    journal volume140
    journal issue6
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4038417
    journal fristpage61502
    journal lastpage061502-10
    treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian