YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fault Management System of LP-EGR Using In-Cylinder Pressure Information in Light-Duty Diesel Engines

    Source: Journal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 004::page 42802
    Author:
    Oh, Junhyeong
    ,
    Min, Kyunghan
    ,
    Han, Manbae
    ,
    Sunwoo, Myoungho
    DOI: 10.1115/1.4038078
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Particulate matters (PM) accumulation through a low-pressure exhaust gas recirculation (LP-EGR) path may hinder to obtain the desired LP-EGR rate and thus causes an increase of nitrogen oxides (NOx). The degree of lack of the LP-EGR rate should be detected, i.e., an LP-EGR fault, and a remedy to compensate for the lack of LP-EGR rate should be a mandate to suppress NOx emission, i.e., a fault management. In order to accomplish those objectives, this paper proposes an LP-EGR fault management system, which consists of a fault diagnosis algorithm, fault-tolerant control algorithm, and an LP-EGR rate model. The model applies a combustion parameter derived from in-cylinder pressure information to the conventional orifice valve model. Consequently, the LP-EGR rate estimation was improved to the maximum error of 2.38% and root-mean-square-error (RMSE) of 1.34% at various operating conditions even under the fault condition compared to that of the conventional model with the maximum error of 7.46% and RMSE of 5.39%. Using this LP-EGR rate model as a virtual sensor, the fault diagnosis algorithm determines an LP-EGR fault state. Based on the state, the fault-tolerant control determines whether or not to generate the offset of the exhaust throttle valve (ETV) position. This offset combines with the look-up table (LUT)-based feedforward controller to control an LP-EGR rate. As a result of real-time verification of the fault management system in the fault condition, the NOx emission decreased by up to about 15%.
    • Download: (3.989Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fault Management System of LP-EGR Using In-Cylinder Pressure Information in Light-Duty Diesel Engines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251262
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorOh, Junhyeong
    contributor authorMin, Kyunghan
    contributor authorHan, Manbae
    contributor authorSunwoo, Myoungho
    date accessioned2019-02-28T10:58:06Z
    date available2019-02-28T10:58:06Z
    date copyright11/7/2017 12:00:00 AM
    date issued2018
    identifier issn0742-4795
    identifier othergtp_140_04_042802.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251262
    description abstractParticulate matters (PM) accumulation through a low-pressure exhaust gas recirculation (LP-EGR) path may hinder to obtain the desired LP-EGR rate and thus causes an increase of nitrogen oxides (NOx). The degree of lack of the LP-EGR rate should be detected, i.e., an LP-EGR fault, and a remedy to compensate for the lack of LP-EGR rate should be a mandate to suppress NOx emission, i.e., a fault management. In order to accomplish those objectives, this paper proposes an LP-EGR fault management system, which consists of a fault diagnosis algorithm, fault-tolerant control algorithm, and an LP-EGR rate model. The model applies a combustion parameter derived from in-cylinder pressure information to the conventional orifice valve model. Consequently, the LP-EGR rate estimation was improved to the maximum error of 2.38% and root-mean-square-error (RMSE) of 1.34% at various operating conditions even under the fault condition compared to that of the conventional model with the maximum error of 7.46% and RMSE of 5.39%. Using this LP-EGR rate model as a virtual sensor, the fault diagnosis algorithm determines an LP-EGR fault state. Based on the state, the fault-tolerant control determines whether or not to generate the offset of the exhaust throttle valve (ETV) position. This offset combines with the look-up table (LUT)-based feedforward controller to control an LP-EGR rate. As a result of real-time verification of the fault management system in the fault condition, the NOx emission decreased by up to about 15%.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFault Management System of LP-EGR Using In-Cylinder Pressure Information in Light-Duty Diesel Engines
    typeJournal Paper
    journal volume140
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4038078
    journal fristpage42802
    journal lastpage042802-11
    treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian