YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Subsynchronous Vibration Patterns Under Reduced Oil Supply Flow Rates

    Source: Journal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 010::page 102503
    Author:
    Nichols, Bradley R.
    ,
    Fittro, Roger L.
    ,
    Goyne, Christopher P.
    DOI: 10.1115/1.4038363
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Reduced oil supply flow rates in fluid film bearings can cause cavitation, or lack of a fully developed hydrodynamic film layer, at the leading edge of the bearing pads. Reduced oil flow has the well-documented effects of higher bearing operating temperatures and decreased power losses; however, little experimental data of its effects on system stability and performance can be found in the literature. This study looks at overall system performance through observed subsynchronous vibration (SSV) patterns of a test rig operating under reduced oil supply flow rates. The test rig was designed to be dynamically similar to a high-speed industrial compressor. It consists of a flexible rotor supported by two tilting pad bearings in vintage, flooded bearing housings. Tests were conducted over a number of supercritical operating speeds and bearing loads, while systematically reducing the oil supply flow rates provided to the bearings. A low amplitude, broadband SSV pattern was observed in the frequency domain. During supercritical operation, a distinctive subsynchronous peak emerged from the broadband pattern at approximately half of the running speed and at the first bending mode of the shaft. Under lightly loaded conditions, the amplitude of the subsynchronous peak increased dramatically with decreasing oil supply flow rate and increasing operating speed. Under an increased load condition, the subsynchronous peak was largely attenuated. A discussion on the possible sources of this SSV including self-excited instability and pad flutter forced vibration is provided with supporting evidence from thermoelastohydrodynamic (TEHD) bearing modeling results.
    • Download: (1.326Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Subsynchronous Vibration Patterns Under Reduced Oil Supply Flow Rates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251256
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorNichols, Bradley R.
    contributor authorFittro, Roger L.
    contributor authorGoyne, Christopher P.
    date accessioned2019-02-28T10:58:03Z
    date available2019-02-28T10:58:03Z
    date copyright7/9/2018 12:00:00 AM
    date issued2018
    identifier issn0742-4795
    identifier othergtp_140_10_102503.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251256
    description abstractReduced oil supply flow rates in fluid film bearings can cause cavitation, or lack of a fully developed hydrodynamic film layer, at the leading edge of the bearing pads. Reduced oil flow has the well-documented effects of higher bearing operating temperatures and decreased power losses; however, little experimental data of its effects on system stability and performance can be found in the literature. This study looks at overall system performance through observed subsynchronous vibration (SSV) patterns of a test rig operating under reduced oil supply flow rates. The test rig was designed to be dynamically similar to a high-speed industrial compressor. It consists of a flexible rotor supported by two tilting pad bearings in vintage, flooded bearing housings. Tests were conducted over a number of supercritical operating speeds and bearing loads, while systematically reducing the oil supply flow rates provided to the bearings. A low amplitude, broadband SSV pattern was observed in the frequency domain. During supercritical operation, a distinctive subsynchronous peak emerged from the broadband pattern at approximately half of the running speed and at the first bending mode of the shaft. Under lightly loaded conditions, the amplitude of the subsynchronous peak increased dramatically with decreasing oil supply flow rate and increasing operating speed. Under an increased load condition, the subsynchronous peak was largely attenuated. A discussion on the possible sources of this SSV including self-excited instability and pad flutter forced vibration is provided with supporting evidence from thermoelastohydrodynamic (TEHD) bearing modeling results.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSubsynchronous Vibration Patterns Under Reduced Oil Supply Flow Rates
    typeJournal Paper
    journal volume140
    journal issue10
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4038363
    journal fristpage102503
    journal lastpage102503-8
    treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian