YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Nozzle Helmholtz Number on Indirect Combustion Noise by Compositional Perturbations

    Source: Journal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 003::page 31501
    Author:
    Magri, Luca
    ,
    O'Brien, Jeffrey
    ,
    Ihme, Matthias
    DOI: 10.1115/1.4037914
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: By modeling a multicomponent gas, a new source of indirect combustion noise is identified, which is named compositional indirect noise. The advection of mixture inhomogeneities exiting the gas-turbine combustion chamber through subsonic and supersonic nozzles is shown to be an acoustic dipole source of sound. The level of mixture inhomogeneity is described by a difference in composition with the mixture fraction. An n-dodecane mixture, which is a kerosene fuel relevant to aeronautics, is used to evaluate the level of compositional noise. By relaxing the compact-nozzle assumption, the indirect noise is numerically calculated for Helmholtz numbers up to 2 in nozzles with linear velocity profile. The compact-nozzle limit is discussed. Only in this limit, it is possible to derive analytical transfer functions for (i) the noise emitted by the nozzle and (ii) the acoustics traveling back to the combustion chamber generated by accelerated compositional inhomogeneities. The former contributes to noise pollution, whereas the latter has the potential to induce thermoacoustic oscillations. It is shown that the compositional indirect noise can be at least as large as the direct noise and entropy noise in choked nozzles and lean mixtures. As the frequency with which the compositional inhomogeneities enter the nozzle increases, or as the nozzle spatial length increases, the level of compositional noise decreases, with a similar, but not equal, trend to the entropy noise. The noisiest configuration is found to be a compact supersonic nozzle.
    • Download: (1.511Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Nozzle Helmholtz Number on Indirect Combustion Noise by Compositional Perturbations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251231
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorMagri, Luca
    contributor authorO'Brien, Jeffrey
    contributor authorIhme, Matthias
    date accessioned2019-02-28T10:57:54Z
    date available2019-02-28T10:57:54Z
    date copyright10/17/2017 12:00:00 AM
    date issued2018
    identifier issn0742-4795
    identifier othergtp_140_03_031501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251231
    description abstractBy modeling a multicomponent gas, a new source of indirect combustion noise is identified, which is named compositional indirect noise. The advection of mixture inhomogeneities exiting the gas-turbine combustion chamber through subsonic and supersonic nozzles is shown to be an acoustic dipole source of sound. The level of mixture inhomogeneity is described by a difference in composition with the mixture fraction. An n-dodecane mixture, which is a kerosene fuel relevant to aeronautics, is used to evaluate the level of compositional noise. By relaxing the compact-nozzle assumption, the indirect noise is numerically calculated for Helmholtz numbers up to 2 in nozzles with linear velocity profile. The compact-nozzle limit is discussed. Only in this limit, it is possible to derive analytical transfer functions for (i) the noise emitted by the nozzle and (ii) the acoustics traveling back to the combustion chamber generated by accelerated compositional inhomogeneities. The former contributes to noise pollution, whereas the latter has the potential to induce thermoacoustic oscillations. It is shown that the compositional indirect noise can be at least as large as the direct noise and entropy noise in choked nozzles and lean mixtures. As the frequency with which the compositional inhomogeneities enter the nozzle increases, or as the nozzle spatial length increases, the level of compositional noise decreases, with a similar, but not equal, trend to the entropy noise. The noisiest configuration is found to be a compact supersonic nozzle.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffects of Nozzle Helmholtz Number on Indirect Combustion Noise by Compositional Perturbations
    typeJournal Paper
    journal volume140
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4037914
    journal fristpage31501
    journal lastpage031501-9
    treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian