YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design of Directional Probes for High-Frequency Turbine Measurements

    Source: Journal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 001::page 11601
    Author:
    Liu, Z.
    ,
    Paniagua, G.
    DOI: 10.1115/1.4037640
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Aerodynamic probes are prevalent in turbomachinery research and gas turbine monitoring. Regrettably, this measurement technique experiences limitations not only in the transonic range but also in the high frequency range. Calibrated numerical tools offer an alternative procedure in the design of suitable instrumentation for turbine applications. First, two different probe geometries, oval and trapezoidal shapes, were characterized at different incidence angles. In particular, the pressure recovery, angle sensitivity, and induced vortex shedding unsteadiness at several yaw angles were evaluated. The studies were performed over a wide range of Mach numbers from subsonic to the transonic regime. The vortex shedding of the probe was also carefully analyzed. In a second evaluation, we selected the oval probe geometry including the line-cavity effects into the pressure tappings. The resonance frequency of line-cavity system was evaluated and compared with analytical calculations, as well as with the detailed analysis of Bergh and Tijdeman. The comparison of the pressure tapping readings with the actual input signal allowed the identification of the transfer functions, as well as the physical mechanisms that should be corrected during the measurements. Finally, three-dimensional (3D) unsteady evaluations were implemented to compute the blockage effects, as well as the final frequency attenuation experienced by the piezo-resistive sensors. All numerical analyses were performed using unsteady Reynolds-averaged Navier–Stokes (URANS) models.
    • Download: (5.396Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design of Directional Probes for High-Frequency Turbine Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251227
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorLiu, Z.
    contributor authorPaniagua, G.
    date accessioned2019-02-28T10:57:53Z
    date available2019-02-28T10:57:53Z
    date copyright9/19/2017 12:00:00 AM
    date issued2018
    identifier issn0742-4795
    identifier othergtp_140_01_011601.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251227
    description abstractAerodynamic probes are prevalent in turbomachinery research and gas turbine monitoring. Regrettably, this measurement technique experiences limitations not only in the transonic range but also in the high frequency range. Calibrated numerical tools offer an alternative procedure in the design of suitable instrumentation for turbine applications. First, two different probe geometries, oval and trapezoidal shapes, were characterized at different incidence angles. In particular, the pressure recovery, angle sensitivity, and induced vortex shedding unsteadiness at several yaw angles were evaluated. The studies were performed over a wide range of Mach numbers from subsonic to the transonic regime. The vortex shedding of the probe was also carefully analyzed. In a second evaluation, we selected the oval probe geometry including the line-cavity effects into the pressure tappings. The resonance frequency of line-cavity system was evaluated and compared with analytical calculations, as well as with the detailed analysis of Bergh and Tijdeman. The comparison of the pressure tapping readings with the actual input signal allowed the identification of the transfer functions, as well as the physical mechanisms that should be corrected during the measurements. Finally, three-dimensional (3D) unsteady evaluations were implemented to compute the blockage effects, as well as the final frequency attenuation experienced by the piezo-resistive sensors. All numerical analyses were performed using unsteady Reynolds-averaged Navier–Stokes (URANS) models.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign of Directional Probes for High-Frequency Turbine Measurements
    typeJournal Paper
    journal volume140
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4037640
    journal fristpage11601
    journal lastpage011601-10
    treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian