YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimization of the Efficiency of Stall Control Using Air Injection for Centrifugal Compressors—Additional Findings

    Source: Journal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 012::page 124501
    Author:
    Halawa, Taher
    DOI: 10.1115/1.4039820
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study presents additional important findings to the results of the research paper; “Optimization of the efficiency of stall control using air injection for centrifugal compressors” published in the Journal of Engineering for Gas Turbines and Power in 2015 (Halawa, T., Gadala, M. S., Alqaradawi, M., and Badr, O., 2015, “Optimization of the Efficiency of Stall Control Using Air Injection for Centrifugal Compressors,” ASME J. Eng. Gas Turbines Power, 137(7), p. 072604). The aim of this study is to make a fine determination of the injection angle, which provides the best stable condition when the compressor operates close to stall condition. A relatively narrower range of injection angles with smaller intervals was selected comparing to the results of the referred published paper, which clarified that the best injection angle is 30 deg. External air was injected close to the diffuser entrance at the shroud surface. Injection was applied with mass flow rate equals 1.5% of the design compressor inlet mass flow rate with injection angles ranged from 16 deg to 34 deg measured from the tangential direction at the vaneless region. It was found that both of injection angles of 28 deg and 30 deg achieved the best results in terms of compressor stabilization but each one of them has a specific advantage comparing to the other one. Using injection angle of 28 deg provided the lowest kinetic energy losses while the best orientation of the fluid through diffuser resulted when using an injection angle of 30 deg.
    • Download: (2.698Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimization of the Efficiency of Stall Control Using Air Injection for Centrifugal Compressors—Additional Findings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251155
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorHalawa, Taher
    date accessioned2019-02-28T10:57:26Z
    date available2019-02-28T10:57:26Z
    date copyright8/9/2018 12:00:00 AM
    date issued2018
    identifier issn0742-4795
    identifier othergtp_140_12_124501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251155
    description abstractThis study presents additional important findings to the results of the research paper; “Optimization of the efficiency of stall control using air injection for centrifugal compressors” published in the Journal of Engineering for Gas Turbines and Power in 2015 (Halawa, T., Gadala, M. S., Alqaradawi, M., and Badr, O., 2015, “Optimization of the Efficiency of Stall Control Using Air Injection for Centrifugal Compressors,” ASME J. Eng. Gas Turbines Power, 137(7), p. 072604). The aim of this study is to make a fine determination of the injection angle, which provides the best stable condition when the compressor operates close to stall condition. A relatively narrower range of injection angles with smaller intervals was selected comparing to the results of the referred published paper, which clarified that the best injection angle is 30 deg. External air was injected close to the diffuser entrance at the shroud surface. Injection was applied with mass flow rate equals 1.5% of the design compressor inlet mass flow rate with injection angles ranged from 16 deg to 34 deg measured from the tangential direction at the vaneless region. It was found that both of injection angles of 28 deg and 30 deg achieved the best results in terms of compressor stabilization but each one of them has a specific advantage comparing to the other one. Using injection angle of 28 deg provided the lowest kinetic energy losses while the best orientation of the fluid through diffuser resulted when using an injection angle of 30 deg.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOptimization of the Efficiency of Stall Control Using Air Injection for Centrifugal Compressors—Additional Findings
    typeJournal Paper
    journal volume140
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4039820
    journal fristpage124501
    journal lastpage124501-4
    treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian