YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of NOx Formation in a Dual Fuel Engine

    Source: Journal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 012::page 122802
    Author:
    Hagen, Luke
    ,
    Breaux, Baine
    ,
    Flory, Michael
    ,
    Hiltner, Joel
    ,
    Fiveland, Scott
    DOI: 10.1115/1.4040179
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The North American oil and gas industry has experienced a market pull for dual fuel (DF) engines that can run on any ratio of fuels ranging from 100% diesel to a high proportion of field gas relative to diesel, while also meeting the U.S. Tier 4 Nonroad emissions standards. A DF engine must meet complex and at times competing requirements in terms of performance, fuel tolerance, and emissions. The challenges faced in designing a DF engine to meet all of the performance and emissions requirements require a detailed understanding of the trade-offs for each pollutant. This paper will focus on the details of NOx formation for high substitution DF engines. Experimental results have demonstrated that NOx emission trends (as a function of lambda) for DF engines differ from both traditional diesel engines and lean burn natural gas (NG) engines. For high energy substitution (>70%) conditions, NOx emissions are a function of the premixed gas lambda (λng) and contain a local minimum, with NOx increasing as lambda is either leaned or richened beyond the local minimum which occurs from approximately λng = 1.7 – 1.85. It is hypothesized that at richer conditions (λng < 1.7), NOx formed in the burning of gaseous fuel results in increased total NOx emissions. At leaner conditions (λng > 1.85), the NOx formed in the diesel post flame regions, as a result of increased oxygen availability, results in increased total NOx emissions. Between these two regions there are competing effects which result in relatively constant NOx.
    • Download: (1.357Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of NOx Formation in a Dual Fuel Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251153
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorHagen, Luke
    contributor authorBreaux, Baine
    contributor authorFlory, Michael
    contributor authorHiltner, Joel
    contributor authorFiveland, Scott
    date accessioned2019-02-28T10:57:26Z
    date available2019-02-28T10:57:26Z
    date copyright8/9/2018 12:00:00 AM
    date issued2018
    identifier issn0742-4795
    identifier othergtp_140_12_122802.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251153
    description abstractThe North American oil and gas industry has experienced a market pull for dual fuel (DF) engines that can run on any ratio of fuels ranging from 100% diesel to a high proportion of field gas relative to diesel, while also meeting the U.S. Tier 4 Nonroad emissions standards. A DF engine must meet complex and at times competing requirements in terms of performance, fuel tolerance, and emissions. The challenges faced in designing a DF engine to meet all of the performance and emissions requirements require a detailed understanding of the trade-offs for each pollutant. This paper will focus on the details of NOx formation for high substitution DF engines. Experimental results have demonstrated that NOx emission trends (as a function of lambda) for DF engines differ from both traditional diesel engines and lean burn natural gas (NG) engines. For high energy substitution (>70%) conditions, NOx emissions are a function of the premixed gas lambda (λng) and contain a local minimum, with NOx increasing as lambda is either leaned or richened beyond the local minimum which occurs from approximately λng = 1.7 – 1.85. It is hypothesized that at richer conditions (λng < 1.7), NOx formed in the burning of gaseous fuel results in increased total NOx emissions. At leaner conditions (λng > 1.85), the NOx formed in the diesel post flame regions, as a result of increased oxygen availability, results in increased total NOx emissions. Between these two regions there are competing effects which result in relatively constant NOx.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Investigation of NOx Formation in a Dual Fuel Engine
    typeJournal Paper
    journal volume140
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4040179
    journal fristpage122802
    journal lastpage122802-6
    treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian