YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Combustion Performance and Unburned Hydrocarbon Emissions of a Natural Gas–Diesel Dual Fuel Engine at a Low Load Condition

    Source: Journal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 011::page 112801
    Author:
    Guo, Hongsheng
    ,
    Liko, Brian
    ,
    Luque, Luis
    ,
    Littlejohns, Jennifer
    DOI: 10.1115/1.4039758
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The combustion of natural gas reduces fuel cost and generates less emissions of carbon dioxide and particulate matter (PM) than diesel and gasoline. Replacing diesel by natural gas in internal combustion engines is of great interest for transportation and stationary power generation. Dual fuel combustion is an efficient way to burn natural gas in internal combustion engines. In natural gas–diesel dual fuel engines, unburned hydrocarbon emissions increase with increasing natural gas fraction. Many studies have been conducted to improve the performance of natural gas–diesel dual fuel engines and reported the performance of combustion and emissions of regulated pollutants and total unburned hydrocarbon at various engine operating strategies. However, little has been reported on the emissions of different unburned hydrocarbon components. In this paper, an experimental investigation was conducted to investigate the combustion performance and emissions of various unburned hydrocarbon components, including methane, ethane, ethylene, acetylene, propylene, formaldehyde, acetaldehyde, and benzaldehyde, at a low engine load condition. The operating conditions, such as engine speed, load, intake temperature, and pressure, were well controlled during the experiment. The combustion and emissions performance of pure diesel and natural gas–diesel dual fuel combustion were compared. The effect of diesel injection timing was analyzed. The results show that appropriately advancing diesel injection timing to form a homogeneous charge compression ignition (HCCI)-like combustion is beneficial to natural gas–diesel dual fuel combustion at low load conditions. The emissions of different unburned hydrocarbon components changed in dual fuel combustion, with emissions of some unburned hydrocarbon components being primarily due to the combustion of natural gas, while those of others being more related to diesel combustion.
    • Download: (1.142Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Combustion Performance and Unburned Hydrocarbon Emissions of a Natural Gas–Diesel Dual Fuel Engine at a Low Load Condition

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251151
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorGuo, Hongsheng
    contributor authorLiko, Brian
    contributor authorLuque, Luis
    contributor authorLittlejohns, Jennifer
    date accessioned2019-02-28T10:57:25Z
    date available2019-02-28T10:57:25Z
    date copyright6/27/2018 12:00:00 AM
    date issued2018
    identifier issn0742-4795
    identifier othergtp_140_11_112801.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251151
    description abstractThe combustion of natural gas reduces fuel cost and generates less emissions of carbon dioxide and particulate matter (PM) than diesel and gasoline. Replacing diesel by natural gas in internal combustion engines is of great interest for transportation and stationary power generation. Dual fuel combustion is an efficient way to burn natural gas in internal combustion engines. In natural gas–diesel dual fuel engines, unburned hydrocarbon emissions increase with increasing natural gas fraction. Many studies have been conducted to improve the performance of natural gas–diesel dual fuel engines and reported the performance of combustion and emissions of regulated pollutants and total unburned hydrocarbon at various engine operating strategies. However, little has been reported on the emissions of different unburned hydrocarbon components. In this paper, an experimental investigation was conducted to investigate the combustion performance and emissions of various unburned hydrocarbon components, including methane, ethane, ethylene, acetylene, propylene, formaldehyde, acetaldehyde, and benzaldehyde, at a low engine load condition. The operating conditions, such as engine speed, load, intake temperature, and pressure, were well controlled during the experiment. The combustion and emissions performance of pure diesel and natural gas–diesel dual fuel combustion were compared. The effect of diesel injection timing was analyzed. The results show that appropriately advancing diesel injection timing to form a homogeneous charge compression ignition (HCCI)-like combustion is beneficial to natural gas–diesel dual fuel combustion at low load conditions. The emissions of different unburned hydrocarbon components changed in dual fuel combustion, with emissions of some unburned hydrocarbon components being primarily due to the combustion of natural gas, while those of others being more related to diesel combustion.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCombustion Performance and Unburned Hydrocarbon Emissions of a Natural Gas–Diesel Dual Fuel Engine at a Low Load Condition
    typeJournal Paper
    journal volume140
    journal issue11
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4039758
    journal fristpage112801
    journal lastpage112801-7
    treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian