YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Relevance of Damper Pre-Optimization and Its Effectiveness on the Forced Response of Blades

    Source: Journal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 006::page 62505
    Author:
    Gastaldi, Chiara
    ,
    Berruti, Teresa M.
    ,
    Gola, Muzio M.
    DOI: 10.1115/1.4038773
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The purpose of this paper is to propose an effective strategy for the design of turbine blades with underplatform dampers (UPDs). The strategy involves damper “pre-optimization,” already proposed by the authors, to exclude, before the blades-coupled nonlinear calculation, all those damper configurations leading to low damping performance. This paper continues this effort by applying pre-optimization to determine a damper configuration which will not jam, roll, or detach under any in-plane platform kinematics (i.e., blade bending modes). Once the candidate damper configuration has been found, the damper equilibrium equations are solved by using both the multiharmonic balance method (MHBM) and the direct-time integration (DTI) for the purpose of finding the correct number of Fourier terms to represent displacements and contact forces. It is shown that contrarily to non-preoptimized dampers, which may display an erratic behavior, one harmonic term together with the static term ensures accurate results. These findings are confirmed by a state-of-the-art code for the calculation of the nonlinear forced response of a damper coupled to two blades. Experimental forced response functions (FRF) of the test case with a nominal damper are available for comparison. The comparison of different damper configurations offers a “high-level” validation of the pre-optimization procedure and highlights the strong influence of the blades mode of vibration on the damper effectiveness. It is shown that the pre-optimized damper is not only the most effective but also the one that leads to a faster and more flexible calculation.
    • Download: (4.224Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Relevance of Damper Pre-Optimization and Its Effectiveness on the Forced Response of Blades

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251137
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorGastaldi, Chiara
    contributor authorBerruti, Teresa M.
    contributor authorGola, Muzio M.
    date accessioned2019-02-28T10:57:20Z
    date available2019-02-28T10:57:20Z
    date copyright4/5/2018 12:00:00 AM
    date issued2018
    identifier issn0742-4795
    identifier othergtp_140_06_062505.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251137
    description abstractThe purpose of this paper is to propose an effective strategy for the design of turbine blades with underplatform dampers (UPDs). The strategy involves damper “pre-optimization,” already proposed by the authors, to exclude, before the blades-coupled nonlinear calculation, all those damper configurations leading to low damping performance. This paper continues this effort by applying pre-optimization to determine a damper configuration which will not jam, roll, or detach under any in-plane platform kinematics (i.e., blade bending modes). Once the candidate damper configuration has been found, the damper equilibrium equations are solved by using both the multiharmonic balance method (MHBM) and the direct-time integration (DTI) for the purpose of finding the correct number of Fourier terms to represent displacements and contact forces. It is shown that contrarily to non-preoptimized dampers, which may display an erratic behavior, one harmonic term together with the static term ensures accurate results. These findings are confirmed by a state-of-the-art code for the calculation of the nonlinear forced response of a damper coupled to two blades. Experimental forced response functions (FRF) of the test case with a nominal damper are available for comparison. The comparison of different damper configurations offers a “high-level” validation of the pre-optimization procedure and highlights the strong influence of the blades mode of vibration on the damper effectiveness. It is shown that the pre-optimized damper is not only the most effective but also the one that leads to a faster and more flexible calculation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Relevance of Damper Pre-Optimization and Its Effectiveness on the Forced Response of Blades
    typeJournal Paper
    journal volume140
    journal issue6
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4038773
    journal fristpage62505
    journal lastpage062505-11
    treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian