YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modal Analysis of Fuel Injection Systems and the Determination of a Transfer Function Between Rail Pressure and Injection Rate

    Source: Journal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 011::page 112808
    Author:
    Ferrari, A.
    ,
    Paolicelli, F.
    DOI: 10.1115/1.4039348
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A detailed analysis of a common rail (CR) fuel injection system, equipped with solenoid injectors for Euro 6 diesel engine applications, has been performed in the frequency domain. A lumped parameter numerical model of the high-pressure hydraulic circuit, from the pump delivery to the injector nozzle, has been realized. The model outcomes have been validated through a comparison with frequency values that were obtained by applying the peak-picking technique to the experimental pressure time histories acquired from the pipe that connects the injector to the rail. The eigenvectors associated with the different eigenfrequencies have been calculated and physically interpreted, thus providing a methodology for the modal analysis of hydraulic systems. Three main modal motions have been identified in the considered fuel injection apparatus, and the possible resonances with the external forcing terms, i.e., pump delivered flow rate, injected flow rate, and injector dynamic fuel leakage through the pilot valve, have been discussed. The investigation has shown that the rail is mainly involved in the first two vibration modes. In the first mode, the rail performs a decoupling action between the high-pressure pump and the downstream hydraulic circuit. Consequently, the oscillations generated by the pump flow rates mainly remain confined to the pipe between the pump and the rail. The second mode is centered on the rail and involves a large part of the hydraulic circuit, both upstream and downstream of the rail. Finally, the third mode principally affects the injector and its internal hydraulic circuit. It has also been observed that some geometric features of the injection apparatus can have a significant effect on the system dynamics and can induce hydraulic resonance phenomena. Furthermore, the lumped parameter model has been used to determine a simplified transfer function between rail pressure and injected flow rate. The knowledge obtained from this study can help to guide designers draw up an improved design of this kind of apparatus, because the pressure waves, which are triggered by impulsive events and are typical of injector working, can affect the performance of modern injection systems, especially when digital rate shaping strategies or closely coupled multiple injections are implemented.
    • Download: (3.937Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modal Analysis of Fuel Injection Systems and the Determination of a Transfer Function Between Rail Pressure and Injection Rate

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251123
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorFerrari, A.
    contributor authorPaolicelli, F.
    date accessioned2019-02-28T10:57:15Z
    date available2019-02-28T10:57:15Z
    date copyright7/30/2018 12:00:00 AM
    date issued2018
    identifier issn0742-4795
    identifier othergtp_140_11_112808.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251123
    description abstractA detailed analysis of a common rail (CR) fuel injection system, equipped with solenoid injectors for Euro 6 diesel engine applications, has been performed in the frequency domain. A lumped parameter numerical model of the high-pressure hydraulic circuit, from the pump delivery to the injector nozzle, has been realized. The model outcomes have been validated through a comparison with frequency values that were obtained by applying the peak-picking technique to the experimental pressure time histories acquired from the pipe that connects the injector to the rail. The eigenvectors associated with the different eigenfrequencies have been calculated and physically interpreted, thus providing a methodology for the modal analysis of hydraulic systems. Three main modal motions have been identified in the considered fuel injection apparatus, and the possible resonances with the external forcing terms, i.e., pump delivered flow rate, injected flow rate, and injector dynamic fuel leakage through the pilot valve, have been discussed. The investigation has shown that the rail is mainly involved in the first two vibration modes. In the first mode, the rail performs a decoupling action between the high-pressure pump and the downstream hydraulic circuit. Consequently, the oscillations generated by the pump flow rates mainly remain confined to the pipe between the pump and the rail. The second mode is centered on the rail and involves a large part of the hydraulic circuit, both upstream and downstream of the rail. Finally, the third mode principally affects the injector and its internal hydraulic circuit. It has also been observed that some geometric features of the injection apparatus can have a significant effect on the system dynamics and can induce hydraulic resonance phenomena. Furthermore, the lumped parameter model has been used to determine a simplified transfer function between rail pressure and injected flow rate. The knowledge obtained from this study can help to guide designers draw up an improved design of this kind of apparatus, because the pressure waves, which are triggered by impulsive events and are typical of injector working, can affect the performance of modern injection systems, especially when digital rate shaping strategies or closely coupled multiple injections are implemented.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModal Analysis of Fuel Injection Systems and the Determination of a Transfer Function Between Rail Pressure and Injection Rate
    typeJournal Paper
    journal volume140
    journal issue11
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4039348
    journal fristpage112808
    journal lastpage112808-11
    treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian