YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Analysis of the Impact of Manufacturing Errors on the Structural Stiffness of Foil Bearings

    Source: Journal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 004::page 41506
    Author:
    Fatu, Aurelian
    ,
    Arghir, Mihai
    DOI: 10.1115/1.4038042
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The dynamic characteristics of foil bearings operating at high rotation speeds depend very much on the mechanical characteristics of the foil structure. For this reason, the stiffness and damping of the structure of foil bearings are problems that are the focus of many analyses. The mechanical characteristics of the foil structure (top and bump foil) are analyzed either by using a simple approach obtained for an isolated bump modeled as a beam or with more elaborate ones taking into account the three-dimensional nature of the bumps and their mutual interactions. These two kinds of models give different foil structure stiffness, with lower values for the simplified model. However, the published experimental results of the foil bearing structure tend to validate the simplified model. The present paper explains the differences between the simplified and the elaborate models by taking into account the manufacturing errors of the foil structure. A three-dimensional model based on the nonlinear theory of elasticity is developed. The model offers a unique insight into the way the bearing structure deforms when the rotor is incrementally pushed into the foil structure. Three realistic manufacturing errors, bump height, bump length, and radius of the bump foil, are analyzed. Bump height and length vary following a normal distribution with a given standard deviation while the radius of the bump foil is given a waviness form with an imposed peak-to-peak amplitude. Three to five cases were calculated for each kind of error. Results show that only the manufacturing errors of the bump height affect the stiffness of the foil structure by diminishing its values. Height errors of 20 μm standard deviation (4% of the average bump height and 60% of the radial clearance) may induce a 40–50% reduction of the stiffness of the foil structure, i.e., in the range of the predictions of the simplified model.
    • Download: (3.770Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Analysis of the Impact of Manufacturing Errors on the Structural Stiffness of Foil Bearings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251120
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorFatu, Aurelian
    contributor authorArghir, Mihai
    date accessioned2019-02-28T10:57:14Z
    date available2019-02-28T10:57:14Z
    date copyright10/31/2017 12:00:00 AM
    date issued2018
    identifier issn0742-4795
    identifier othergtp_140_04_041506.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251120
    description abstractThe dynamic characteristics of foil bearings operating at high rotation speeds depend very much on the mechanical characteristics of the foil structure. For this reason, the stiffness and damping of the structure of foil bearings are problems that are the focus of many analyses. The mechanical characteristics of the foil structure (top and bump foil) are analyzed either by using a simple approach obtained for an isolated bump modeled as a beam or with more elaborate ones taking into account the three-dimensional nature of the bumps and their mutual interactions. These two kinds of models give different foil structure stiffness, with lower values for the simplified model. However, the published experimental results of the foil bearing structure tend to validate the simplified model. The present paper explains the differences between the simplified and the elaborate models by taking into account the manufacturing errors of the foil structure. A three-dimensional model based on the nonlinear theory of elasticity is developed. The model offers a unique insight into the way the bearing structure deforms when the rotor is incrementally pushed into the foil structure. Three realistic manufacturing errors, bump height, bump length, and radius of the bump foil, are analyzed. Bump height and length vary following a normal distribution with a given standard deviation while the radius of the bump foil is given a waviness form with an imposed peak-to-peak amplitude. Three to five cases were calculated for each kind of error. Results show that only the manufacturing errors of the bump height affect the stiffness of the foil structure by diminishing its values. Height errors of 20 μm standard deviation (4% of the average bump height and 60% of the radial clearance) may induce a 40–50% reduction of the stiffness of the foil structure, i.e., in the range of the predictions of the simplified model.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Analysis of the Impact of Manufacturing Errors on the Structural Stiffness of Foil Bearings
    typeJournal Paper
    journal volume140
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4038042
    journal fristpage41506
    journal lastpage041506-9
    treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian