YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Compressive Failure of Fiber Composites: A Homogenized, Mesh-Independent Model

    Source: Journal of Applied Mechanics:;2018:;volume( 085 ):;issue: 009::page 91001
    Author:
    Hasanyan, Armanj D.
    ,
    Waas, Anthony M.
    DOI: 10.1115/1.4039754
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Micromechanics models of fiber kinking provide insight into the compressive failure mechanism of fiber reinforced composites, but are computationally inefficient in capturing the progressive damage and failure of the material. A homogenized model is desirable for this purpose. Yet, if a proper length scale is not incorporated into the continuum, the resulting implementation becomes mesh dependent when a numerical approach is used for computation. In this paper, a micropolar continuum is discussed to characterize the compressive failure of fiber composites dominated by kinking. Kink banding is an instability associated with a snap-back behavior in the load–displacement response, leading to the formation of a finite region of localized deformation. The challenge in modeling this mode of failure is the inherent geometric and matrix material nonlinearity that must be considered. To overcome the mesh dependency of numerical results, a length scale is naturally introduced when modeling the composite as a micropolar continuum. A new approach is presented to approximate the effective transversely isotropic micropolar constitutive relation of a fiber composite. Using an updated Lagrangian, nonlinear finite element code, previously developed for incorporating the additional rotational degrees-of-freedom (DOFs) of micropolar theory, the simulation of localized deformation in a continuum model, corresponding to fiber kinking, is demonstrated and is found to be comparable with the micromechanics simulation results. Most importantly, the elusive kink band width is a natural outcome of the continuum model.
    • Download: (6.855Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Compressive Failure of Fiber Composites: A Homogenized, Mesh-Independent Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250965
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorHasanyan, Armanj D.
    contributor authorWaas, Anthony M.
    date accessioned2019-02-28T10:56:13Z
    date available2019-02-28T10:56:13Z
    date copyright6/14/2018 12:00:00 AM
    date issued2018
    identifier issn0021-8936
    identifier otherjam_085_09_091001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250965
    description abstractMicromechanics models of fiber kinking provide insight into the compressive failure mechanism of fiber reinforced composites, but are computationally inefficient in capturing the progressive damage and failure of the material. A homogenized model is desirable for this purpose. Yet, if a proper length scale is not incorporated into the continuum, the resulting implementation becomes mesh dependent when a numerical approach is used for computation. In this paper, a micropolar continuum is discussed to characterize the compressive failure of fiber composites dominated by kinking. Kink banding is an instability associated with a snap-back behavior in the load–displacement response, leading to the formation of a finite region of localized deformation. The challenge in modeling this mode of failure is the inherent geometric and matrix material nonlinearity that must be considered. To overcome the mesh dependency of numerical results, a length scale is naturally introduced when modeling the composite as a micropolar continuum. A new approach is presented to approximate the effective transversely isotropic micropolar constitutive relation of a fiber composite. Using an updated Lagrangian, nonlinear finite element code, previously developed for incorporating the additional rotational degrees-of-freedom (DOFs) of micropolar theory, the simulation of localized deformation in a continuum model, corresponding to fiber kinking, is demonstrated and is found to be comparable with the micromechanics simulation results. Most importantly, the elusive kink band width is a natural outcome of the continuum model.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCompressive Failure of Fiber Composites: A Homogenized, Mesh-Independent Model
    typeJournal Paper
    journal volume85
    journal issue9
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4039754
    journal fristpage91001
    journal lastpage091001-15
    treeJournal of Applied Mechanics:;2018:;volume( 085 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian