YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Inverse Problem of Linear Lagrangian Dynamics

    Source: Journal of Applied Mechanics:;2018:;volume( 085 ):;issue: 003::page 31002
    Author:
    Goncalves Salsa, Jr., Rubens
    ,
    Kawano, Daniel T.
    ,
    Ma, Fai
    ,
    Leitmann, George
    DOI: 10.1115/1.4038749
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A comprehensive study is reported herein for the evaluation of Lagrangian functions for linear systems possessing symmetric or nonsymmetric coefficient matrices. Contrary to popular beliefs, it is shown that many coupled linear systems do not admit Lagrangian functions. In addition, Lagrangian functions generally cannot be determined by system decoupling unless further restriction such as classical damping is assumed. However, a scalar function that plays the role of a Lagrangian function can be determined for any linear system by decoupling. This generalized Lagrangian function produces the equations of motion and it contains information on system properties, yet it satisfies a modified version of the Euler–Lagrange equations. Subject to this interpretation, a solution to the inverse problem of linear Lagrangian dynamics is provided.
    • Download: (222.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Inverse Problem of Linear Lagrangian Dynamics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250888
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorGoncalves Salsa, Jr., Rubens
    contributor authorKawano, Daniel T.
    contributor authorMa, Fai
    contributor authorLeitmann, George
    date accessioned2019-02-28T10:55:45Z
    date available2019-02-28T10:55:45Z
    date copyright1/4/2018 12:00:00 AM
    date issued2018
    identifier issn0021-8936
    identifier otherjam_085_03_031002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250888
    description abstractA comprehensive study is reported herein for the evaluation of Lagrangian functions for linear systems possessing symmetric or nonsymmetric coefficient matrices. Contrary to popular beliefs, it is shown that many coupled linear systems do not admit Lagrangian functions. In addition, Lagrangian functions generally cannot be determined by system decoupling unless further restriction such as classical damping is assumed. However, a scalar function that plays the role of a Lagrangian function can be determined for any linear system by decoupling. This generalized Lagrangian function produces the equations of motion and it contains information on system properties, yet it satisfies a modified version of the Euler–Lagrange equations. Subject to this interpretation, a solution to the inverse problem of linear Lagrangian dynamics is provided.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Inverse Problem of Linear Lagrangian Dynamics
    typeJournal Paper
    journal volume85
    journal issue3
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4038749
    journal fristpage31002
    journal lastpage031002-10
    treeJournal of Applied Mechanics:;2018:;volume( 085 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian