YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vibration of Flexible Structures Under Nonlinear Boundary Conditions

    Source: Journal of Applied Mechanics:;2017:;volume( 084 ):;issue: 011::page 111006
    Author:
    Mao
    ,
    Xiao-Ye;Ding
    ,
    Hu;Chen
    ,
    Li-Qun
    DOI: 10.1115/1.4037883
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The nonlinear response of a flexible structure, subjected to generally supported conditions with nonlinearities, is investigated for the first time. An analytical procedure is proposed first. Moreover, a simulation technique usually employed in static analysis is developed for confirmation. Generally, ordinary perturbation methods could analyze dynamics of flexible structures with linear boundary conditions. As nonlinear boundaries are taken into account, they are out of operation for the modal shape that is hardly to be obtained, which is the key to the analysis. In order to overcome this, nonlinear boundary conditions are rescaled and the technique of modal revision is employed. Consequently, each governing equation with different time-scales could be analyzed exactly according to corresponding rescaled boundary conditions. The total response of any point at the flexible structure will be composed by harmonic responses yielded by the analytical method. Furthermore, the differential quadrature element method (DQEM), a numerical simulation technique could satisfy boundary conditions strictly, is introduced to certify analytical results. The comparison shows a reasonable agreement between these two methods. In fact, the accuracy of the analytical method for nonlinear boundaries could be explained in theory. Based on the certification, boundary nonlinearities are discussed in detail analytically and found to play an important role in responses. Because of the important role played by the nonlinear factors in the vibration and control of the flexible structure, this paper will open the vibration analysis and numerical study of the flexible structure with nonlinear constraints.
    • Download: (1.365Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vibration of Flexible Structures Under Nonlinear Boundary Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4242830
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorMao
    contributor authorXiao-Ye;Ding
    contributor authorHu;Chen
    contributor authorLi-Qun
    date accessioned2017-12-30T11:43:32Z
    date available2017-12-30T11:43:32Z
    date copyright9/21/2017 12:00:00 AM
    date issued2017
    identifier issn0021-8936
    identifier otherjam_084_11_111006.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242830
    description abstractThe nonlinear response of a flexible structure, subjected to generally supported conditions with nonlinearities, is investigated for the first time. An analytical procedure is proposed first. Moreover, a simulation technique usually employed in static analysis is developed for confirmation. Generally, ordinary perturbation methods could analyze dynamics of flexible structures with linear boundary conditions. As nonlinear boundaries are taken into account, they are out of operation for the modal shape that is hardly to be obtained, which is the key to the analysis. In order to overcome this, nonlinear boundary conditions are rescaled and the technique of modal revision is employed. Consequently, each governing equation with different time-scales could be analyzed exactly according to corresponding rescaled boundary conditions. The total response of any point at the flexible structure will be composed by harmonic responses yielded by the analytical method. Furthermore, the differential quadrature element method (DQEM), a numerical simulation technique could satisfy boundary conditions strictly, is introduced to certify analytical results. The comparison shows a reasonable agreement between these two methods. In fact, the accuracy of the analytical method for nonlinear boundaries could be explained in theory. Based on the certification, boundary nonlinearities are discussed in detail analytically and found to play an important role in responses. Because of the important role played by the nonlinear factors in the vibration and control of the flexible structure, this paper will open the vibration analysis and numerical study of the flexible structure with nonlinear constraints.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleVibration of Flexible Structures Under Nonlinear Boundary Conditions
    typeJournal Paper
    journal volume84
    journal issue11
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4037883
    journal fristpage111006
    journal lastpage111006-11
    treeJournal of Applied Mechanics:;2017:;volume( 084 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian