YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Early Fault Detection of Hot Components in Gas Turbines

    Source: Journal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 002::page 21201
    Author:
    Jinfu, Liu
    ,
    Jiao, Liu
    ,
    Jie, Wan
    ,
    Zhongqi, Wang
    ,
    Daren, Yu
    DOI: 10.1115/1.4034153
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The working environment of hot components is the most adverse of all gas turbine components. Malfunction of hot components is often followed by catastrophic consequences. Early fault detection plays a significant role in detecting performance deterioration immediately and reducing unscheduled maintenance. In this paper, an early fault detection method is introduced to detect early fault symptoms of hot components in gas turbines. The exhaust gas temperature (EGT) is usually used to monitor the performance of the hot components. The EGT is measured by several thermocouples distributed equally at the outlet of the gas turbine. EGT profile is symmetrical when the unit is in normal operation. And the faults of hot components lead to large temperature differences between different thermocouple readings. However, interferences can potentially affect temperature differences, and sometimes, especially in the early stages of the fault, its influence can be even higher than that of the faults. To improve the detection sensitivity, the influence of interferences must be eliminated. The two main interferences investigated in this study are associated with the operating and ambient conditions, and the structure deviation of different combustion chambers caused by processing and installation errors. Based on the basic principles of gas turbines and Fisher discriminant analysis (FDA), a new detection indicator is presented that characterizes the intrinsic structure information of the hot components. Using this new indicator, the interferences involving the certainty and the uncertainty are suppressed and the sensitivity of early fault detection in gas turbine hot components is improved. The robustness and the sensitivity of the proposed method are verified by actual data from a Taurus 70 gas turbine produced by Solar Turbines.
    • Download: (4.501Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Early Fault Detection of Hot Components in Gas Turbines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4237035
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorJinfu, Liu
    contributor authorJiao, Liu
    contributor authorJie, Wan
    contributor authorZhongqi, Wang
    contributor authorDaren, Yu
    date accessioned2017-11-25T07:21:23Z
    date available2017-11-25T07:21:23Z
    date copyright2016/13/9
    date issued2017
    identifier issn0742-4795
    identifier othergtp_139_02_021201.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4237035
    description abstractThe working environment of hot components is the most adverse of all gas turbine components. Malfunction of hot components is often followed by catastrophic consequences. Early fault detection plays a significant role in detecting performance deterioration immediately and reducing unscheduled maintenance. In this paper, an early fault detection method is introduced to detect early fault symptoms of hot components in gas turbines. The exhaust gas temperature (EGT) is usually used to monitor the performance of the hot components. The EGT is measured by several thermocouples distributed equally at the outlet of the gas turbine. EGT profile is symmetrical when the unit is in normal operation. And the faults of hot components lead to large temperature differences between different thermocouple readings. However, interferences can potentially affect temperature differences, and sometimes, especially in the early stages of the fault, its influence can be even higher than that of the faults. To improve the detection sensitivity, the influence of interferences must be eliminated. The two main interferences investigated in this study are associated with the operating and ambient conditions, and the structure deviation of different combustion chambers caused by processing and installation errors. Based on the basic principles of gas turbines and Fisher discriminant analysis (FDA), a new detection indicator is presented that characterizes the intrinsic structure information of the hot components. Using this new indicator, the interferences involving the certainty and the uncertainty are suppressed and the sensitivity of early fault detection in gas turbine hot components is improved. The robustness and the sensitivity of the proposed method are verified by actual data from a Taurus 70 gas turbine produced by Solar Turbines.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEarly Fault Detection of Hot Components in Gas Turbines
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4034153
    journal fristpage21201
    journal lastpage021201-12
    treeJournal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian