YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parametrically Induced Damping in a Cracked Rotor

    Source: Journal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 001::page 12505
    Author:
    Kulesza, Zbigniew
    ,
    Sawicki, Jerzy T.
    DOI: 10.1115/1.4034197
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A transverse shaft crack in a rotor is usually modeled as a local change in shaft stiffness. This local stiffness change is not constant and varies as a result of a so-called breathing mechanism, explained with periodical opening and closing of crack faces under the load of external forces applied to the rotor. The rotor with a periodically varied stiffness can be modeled as a parametrically excited linear system. In the presence of a parametric excitation, the vibrations of the system can be amplified or damped at specific excitation frequencies. Usually, the frequencies at which the vibrations are amplified are important, since they can affect stability of the system. However, the increased damping at specific frequencies is a significant feature of a parametrically excited system that can have some potentially useful applications. One of such applications can be an early detection of a shaft crack. This paper presents results of numerical analysis of the influence of Rayleigh's damping and gyroscopic effects on the increase in damping in a parametrically excited rotor with a cracked shaft. It is shown that the increase in damping in a parametrically excited system is rather a rare phenomenon that can be observed only at properly selected values of the excitation frequency and Rayleigh's damping. Furthermore, gyroscopic effects influence the exact values of antiresonance frequencies at which the phenomenon appears.
    • Download: (2.059Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parametrically Induced Damping in a Cracked Rotor

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4237025
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorKulesza, Zbigniew
    contributor authorSawicki, Jerzy T.
    date accessioned2017-11-25T07:21:22Z
    date available2017-11-25T07:21:22Z
    date copyright2016/16/8
    date issued2017
    identifier issn0742-4795
    identifier othergtp_139_01_012505.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4237025
    description abstractA transverse shaft crack in a rotor is usually modeled as a local change in shaft stiffness. This local stiffness change is not constant and varies as a result of a so-called breathing mechanism, explained with periodical opening and closing of crack faces under the load of external forces applied to the rotor. The rotor with a periodically varied stiffness can be modeled as a parametrically excited linear system. In the presence of a parametric excitation, the vibrations of the system can be amplified or damped at specific excitation frequencies. Usually, the frequencies at which the vibrations are amplified are important, since they can affect stability of the system. However, the increased damping at specific frequencies is a significant feature of a parametrically excited system that can have some potentially useful applications. One of such applications can be an early detection of a shaft crack. This paper presents results of numerical analysis of the influence of Rayleigh's damping and gyroscopic effects on the increase in damping in a parametrically excited rotor with a cracked shaft. It is shown that the increase in damping in a parametrically excited system is rather a rare phenomenon that can be observed only at properly selected values of the excitation frequency and Rayleigh's damping. Furthermore, gyroscopic effects influence the exact values of antiresonance frequencies at which the phenomenon appears.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleParametrically Induced Damping in a Cracked Rotor
    typeJournal Paper
    journal volume139
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4034197
    journal fristpage12505
    journal lastpage012505-8
    treeJournal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian