YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics

    Source: Journal of Applied Mechanics:;2016:;volume( 083 ):;issue: 011::page 111008
    Author:
    Ma, Qiang
    ,
    Zhang, Yihui
    DOI: 10.1115/1.4034458
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Fractal-inspired designs represent an emerging class of strategy for stretchable electronics, which have been demonstrated to be particularly useful for various applications, such as stretchable batteries and biointegrated electrophysiological electrodes. The fractal-inspired constructs usually undergo complicated, nonlinear deformations under mechanical loading, because of the highly complex and diverse microstructures inherent in high-order fractal patterns. The underlying relations between the nonlinear mechanical responses and microstructure geometry are essential in practical applications, which require a relevant mechanics theory to serve as the basis of a design approach. Here, a theoretical model inspired by the mechanism of ordered unraveling is developed to study the nonlinear stress–strain curves and elastic stretchability for a class of fractal-inspired horseshoe microstructures. Analytic solutions were obtained for some key mechanical quantities, such as the elastic modulus and the tangent modulus at the beginning of each deformation stage. Both the finite-element analyses (FEA) and experiments were carried out to validate the model. Systematic analyses of the microstructure–property relationship dictate how to leverage the various geometric parameters to tune the multistage, J-shaped stress–strain curves. Moreover, a demonstrative example shows the utility of the theoretical model in design optimization of fractal-inspired microstructures used as electrophysiological electrodes, aiming to achieve maximum elastic stretchability for prescribed filling ratios. The results indicate a substantial enhancement (e.g., >4 times) of elastic stretchability by using fractal designs, as compared to traditional horseshoe designs. This study can serve as design guidelines of fractal-inspired microstructures in different stretchable electronic systems.
    • Download: (4.498Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236762
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorMa, Qiang
    contributor authorZhang, Yihui
    date accessioned2017-11-25T07:20:55Z
    date available2017-11-25T07:20:55Z
    date copyright2016/09/08
    date issued2016
    identifier issn0021-8936
    identifier otherjam_083_11_111008.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236762
    description abstractFractal-inspired designs represent an emerging class of strategy for stretchable electronics, which have been demonstrated to be particularly useful for various applications, such as stretchable batteries and biointegrated electrophysiological electrodes. The fractal-inspired constructs usually undergo complicated, nonlinear deformations under mechanical loading, because of the highly complex and diverse microstructures inherent in high-order fractal patterns. The underlying relations between the nonlinear mechanical responses and microstructure geometry are essential in practical applications, which require a relevant mechanics theory to serve as the basis of a design approach. Here, a theoretical model inspired by the mechanism of ordered unraveling is developed to study the nonlinear stress–strain curves and elastic stretchability for a class of fractal-inspired horseshoe microstructures. Analytic solutions were obtained for some key mechanical quantities, such as the elastic modulus and the tangent modulus at the beginning of each deformation stage. Both the finite-element analyses (FEA) and experiments were carried out to validate the model. Systematic analyses of the microstructure–property relationship dictate how to leverage the various geometric parameters to tune the multistage, J-shaped stress–strain curves. Moreover, a demonstrative example shows the utility of the theoretical model in design optimization of fractal-inspired microstructures used as electrophysiological electrodes, aiming to achieve maximum elastic stretchability for prescribed filling ratios. The results indicate a substantial enhancement (e.g., >4 times) of elastic stretchability by using fractal designs, as compared to traditional horseshoe designs. This study can serve as design guidelines of fractal-inspired microstructures in different stretchable electronic systems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics
    typeJournal Paper
    journal volume83
    journal issue11
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4034458
    journal fristpage111008
    journal lastpage111008-19
    treeJournal of Applied Mechanics:;2016:;volume( 083 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian