YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wave Dispersion and Basic Concepts of Peridynamics Compared to Classical Nonlocal Damage Models

    Source: Journal of Applied Mechanics:;2016:;volume( 083 ):;issue: 011::page 111004
    Author:
    Bažant, Zdeněk P.
    ,
    Luo, Wen
    ,
    Chau, Viet T.
    ,
    Bessa, Miguel A.
    DOI: 10.1115/1.4034319
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The spectral approach is used to examine the wave dispersion in linearized bond-based and state-based peridynamics in one and two dimensions, and comparisons with the classical nonlocal models for damage are made. Similar to the classical nonlocal models, the peridynamic dispersion of elastic waves occurs for high frequencies. It is shown to be stronger in the state-based than in the bond-based version, with multiple wavelengths giving a vanishing phase velocity, one of them longer than the horizon. In the bond-based and state-based, the nonlocality of elastic and inelastic behaviors is coupled, i.e., the dispersion of elastic and inelastic waves cannot be independently controlled. In consequence, the difference between: (1) the nonlocality due to material characteristic length for softening damage, which ensures stability of softening damage and serves as the localization limiter, and (2) the nonlocality due to material heterogeneity cannot be distinguished. This coupling of both kinds of dispersion is unrealistic and similar to the original 1984 nonlocal model for damage which was in 1987 abandoned and improved to be nondispersive or mildly dispersive for elasticity but strongly dispersive for damage. With the same regular grid of nodes, the convergence rates for both the bond-based and state-based versions are found to be slower than for the finite difference methods. It is shown that there exists a limit case of peridynamics, with a micromodulus in the form of a Delta function spiking at the horizon. This limit case is equivalent to the unstabilized imbricate continuum and exhibits zero-energy periodic modes of instability. Finally, it is emphasized that the node-skipping force interactions, a salient feature of peridynamics, are physically unjustified (except on the atomic scale) because in reality the forces get transmitted to the second and farther neighboring particles (or nodes) through the displacements and rotations of the intermediate particles, rather than by some potential permeating particles as on the atomic scale.
    • Download: (2.178Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wave Dispersion and Basic Concepts of Peridynamics Compared to Classical Nonlocal Damage Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236718
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorBažant, Zdeněk P.
    contributor authorLuo, Wen
    contributor authorChau, Viet T.
    contributor authorBessa, Miguel A.
    date accessioned2017-11-25T07:20:52Z
    date available2017-11-25T07:20:52Z
    date copyright2016/08/30
    date issued2016
    identifier issn0021-8936
    identifier otherjam_083_11_111004.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236718
    description abstractThe spectral approach is used to examine the wave dispersion in linearized bond-based and state-based peridynamics in one and two dimensions, and comparisons with the classical nonlocal models for damage are made. Similar to the classical nonlocal models, the peridynamic dispersion of elastic waves occurs for high frequencies. It is shown to be stronger in the state-based than in the bond-based version, with multiple wavelengths giving a vanishing phase velocity, one of them longer than the horizon. In the bond-based and state-based, the nonlocality of elastic and inelastic behaviors is coupled, i.e., the dispersion of elastic and inelastic waves cannot be independently controlled. In consequence, the difference between: (1) the nonlocality due to material characteristic length for softening damage, which ensures stability of softening damage and serves as the localization limiter, and (2) the nonlocality due to material heterogeneity cannot be distinguished. This coupling of both kinds of dispersion is unrealistic and similar to the original 1984 nonlocal model for damage which was in 1987 abandoned and improved to be nondispersive or mildly dispersive for elasticity but strongly dispersive for damage. With the same regular grid of nodes, the convergence rates for both the bond-based and state-based versions are found to be slower than for the finite difference methods. It is shown that there exists a limit case of peridynamics, with a micromodulus in the form of a Delta function spiking at the horizon. This limit case is equivalent to the unstabilized imbricate continuum and exhibits zero-energy periodic modes of instability. Finally, it is emphasized that the node-skipping force interactions, a salient feature of peridynamics, are physically unjustified (except on the atomic scale) because in reality the forces get transmitted to the second and farther neighboring particles (or nodes) through the displacements and rotations of the intermediate particles, rather than by some potential permeating particles as on the atomic scale.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleWave Dispersion and Basic Concepts of Peridynamics Compared to Classical Nonlocal Damage Models
    typeJournal Paper
    journal volume83
    journal issue11
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4034319
    journal fristpage111004
    journal lastpage111004-16
    treeJournal of Applied Mechanics:;2016:;volume( 083 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian