YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat Development and Comparison Between the Steady and Pulsating Flows Through Aluminum Foam Heat Sink

    Source: Journal of Thermal Science and Engineering Applications:;2017:;volume( 009 ):;issue: 003::page 31006
    Author:
    Bayomy, A. M.
    ,
    Saghir, M. Z.
    DOI: 10.1115/1.4035937
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Continuous improvements in electronic devices for high-performance computers have led to a need for new and more effective methods of chip cooling. The first purpose of this study was to investigate the heat transfer development and characteristics of aluminum foam heat sink subjected to steady water flow for electronics cooling (Intel core i7 processor). The second purpose was to implement a new type of water flow through the aluminum foam, which is pulsating or oscillating flow in order to achieve more uniform temperature distribution over the electronic surfaces. The aluminum foam heat sink was subjected to a water flow covering the non-Darcy laminar flow regime (297–1353 Reynolds numbers). The bottom side of the heat sink was heated with a heat flux between 8.5 and 13.8 W/cm2. The pulsating flow frequency was ranged from 0.04 to 0.1 Hz. In addition, in order to complement the experimental studies, a numerical model was developed using finite element method and compared with the experimental data. The results revealed that the thermal entry length of the fluid flow through metal foam (porous media) is much smaller than that for laminar internal flow through empty channel. The result also showed that the local surface temperature increases along with increasing the axial flow direction for steady water flow case. On the other hand, for pulsating flow, the local temperature distributions act as a convex profile with the maximum surface temperature at the center of the test section. In addition, it was observed that the pulsating water flow through the aluminum foam heat sink achieves enhancement by 14% in the average Nusselt number and by 73% in temperature uniformity over the surface compared with steady water flow case.
    • Download: (6.219Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat Development and Comparison Between the Steady and Pulsating Flows Through Aluminum Foam Heat Sink

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235821
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorBayomy, A. M.
    contributor authorSaghir, M. Z.
    date accessioned2017-11-25T07:19:26Z
    date available2017-11-25T07:19:26Z
    date copyright2017/4/4
    date issued2017
    identifier issn1948-5085
    identifier othertsea_009_03_031006.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235821
    description abstractContinuous improvements in electronic devices for high-performance computers have led to a need for new and more effective methods of chip cooling. The first purpose of this study was to investigate the heat transfer development and characteristics of aluminum foam heat sink subjected to steady water flow for electronics cooling (Intel core i7 processor). The second purpose was to implement a new type of water flow through the aluminum foam, which is pulsating or oscillating flow in order to achieve more uniform temperature distribution over the electronic surfaces. The aluminum foam heat sink was subjected to a water flow covering the non-Darcy laminar flow regime (297–1353 Reynolds numbers). The bottom side of the heat sink was heated with a heat flux between 8.5 and 13.8 W/cm2. The pulsating flow frequency was ranged from 0.04 to 0.1 Hz. In addition, in order to complement the experimental studies, a numerical model was developed using finite element method and compared with the experimental data. The results revealed that the thermal entry length of the fluid flow through metal foam (porous media) is much smaller than that for laminar internal flow through empty channel. The result also showed that the local surface temperature increases along with increasing the axial flow direction for steady water flow case. On the other hand, for pulsating flow, the local temperature distributions act as a convex profile with the maximum surface temperature at the center of the test section. In addition, it was observed that the pulsating water flow through the aluminum foam heat sink achieves enhancement by 14% in the average Nusselt number and by 73% in temperature uniformity over the surface compared with steady water flow case.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeat Development and Comparison Between the Steady and Pulsating Flows Through Aluminum Foam Heat Sink
    typeJournal Paper
    journal volume9
    journal issue3
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4035937
    journal fristpage31006
    journal lastpage031006-20
    treeJournal of Thermal Science and Engineering Applications:;2017:;volume( 009 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian