YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Similarity Solution for Mixed-Convection Boundary Layer Nanofluid Flow on an Inclined Permeable Surface

    Source: Journal of Thermal Science and Engineering Applications:;2017:;volume( 009 ):;issue: 002::page 21015
    Author:
    Ziaei-Rad, Masoud
    ,
    Kasaeipoor, Abbas
    ,
    Mehdi Rashidi, Mohammad
    ,
    Lorenzini, Giulio
    DOI: 10.1115/1.4035733
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper concerns with calculation of heat transfer and pressure drop in a mixed-convection nanofluid flow on a permeable inclined flat plate. Solution of governing boundary layer equations is presented for some values of injection/suction parameter (f0), surface angle (γ), Galileo number (Ga), mixed-convection parameter (λ), volume fraction (φ), and type of nanoparticles. The numerical outcomes are presented in terms of average skin friction coefficient (Cf) and Nusselt number (Nu). The results indicate that adding nanoparticles to the base fluid enhances both average friction factor and Nusselt number for a wide range of other effective parameters. We found that for a nanofluid with φ = 0.6, injection from the wall (f0 = −0.2) offers an enhancement of 30% in Cf than the base fluid, while this growth is about 35% for the same case with wall suction (f0 = 0.2). However, increasing the wall suction will linearly raise the heat transfer rate from the surface, similar for all range of nanoparticles volume fraction. The computations also showed that by changing the surface angle from horizontal state to 60 deg, the friction factor becomes 2.4 times by average for all φ's, while 25% increase yields in Nusselt number for the same case. For assisting flow, there is a favorable pressure gradient due to the buoyancy forces, which results in larger Cf and Nu than in opposing flows. We can also see that for all φ values, enhancing Ga/Re2 parameter from 0 to 0.005 makes the friction factor 4.5 times, while causes 50% increase in heat transfer coefficient. Finally, we realized that among the studied nanoparticles, the maximum influence on the friction and heat transfer belongs to copper nanoparticles.
    • Download: (1.329Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Similarity Solution for Mixed-Convection Boundary Layer Nanofluid Flow on an Inclined Permeable Surface

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235806
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorZiaei-Rad, Masoud
    contributor authorKasaeipoor, Abbas
    contributor authorMehdi Rashidi, Mohammad
    contributor authorLorenzini, Giulio
    date accessioned2017-11-25T07:19:25Z
    date available2017-11-25T07:19:25Z
    date copyright2017/7/3
    date issued2017
    identifier issn1948-5085
    identifier othertsea_009_02_021015.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235806
    description abstractThis paper concerns with calculation of heat transfer and pressure drop in a mixed-convection nanofluid flow on a permeable inclined flat plate. Solution of governing boundary layer equations is presented for some values of injection/suction parameter (f0), surface angle (γ), Galileo number (Ga), mixed-convection parameter (λ), volume fraction (φ), and type of nanoparticles. The numerical outcomes are presented in terms of average skin friction coefficient (Cf) and Nusselt number (Nu). The results indicate that adding nanoparticles to the base fluid enhances both average friction factor and Nusselt number for a wide range of other effective parameters. We found that for a nanofluid with φ = 0.6, injection from the wall (f0 = −0.2) offers an enhancement of 30% in Cf than the base fluid, while this growth is about 35% for the same case with wall suction (f0 = 0.2). However, increasing the wall suction will linearly raise the heat transfer rate from the surface, similar for all range of nanoparticles volume fraction. The computations also showed that by changing the surface angle from horizontal state to 60 deg, the friction factor becomes 2.4 times by average for all φ's, while 25% increase yields in Nusselt number for the same case. For assisting flow, there is a favorable pressure gradient due to the buoyancy forces, which results in larger Cf and Nu than in opposing flows. We can also see that for all φ values, enhancing Ga/Re2 parameter from 0 to 0.005 makes the friction factor 4.5 times, while causes 50% increase in heat transfer coefficient. Finally, we realized that among the studied nanoparticles, the maximum influence on the friction and heat transfer belongs to copper nanoparticles.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Similarity Solution for Mixed-Convection Boundary Layer Nanofluid Flow on an Inclined Permeable Surface
    typeJournal Paper
    journal volume9
    journal issue2
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4035733
    journal fristpage21015
    journal lastpage021015-9
    treeJournal of Thermal Science and Engineering Applications:;2017:;volume( 009 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian