YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Longitudinal-Fin Heat Sink Optimization Capturing Conjugate Effects Under Fully Developed Conditions

    Source: Journal of Thermal Science and Engineering Applications:;2016:;volume( 008 ):;issue: 004::page 41011
    Author:
    Karamanis, Georgios
    ,
    Hodes, Marc
    DOI: 10.1115/1.4034339
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We develop a method requiring minimal computations to optimize the fin thickness and spacing in a fully shrouded longitudinal-fin heat sink (LFHS) to minimize its thermal resistance under conditions of hydrodynamically and thermally developed laminar flow. Prescribed quantities are the density, viscosity, thermal conductivity and specific heat capacity of the fluid, the thermal conductivity and height of the fins, the width and length of the heat sink, and the pressure drop across it. Alternatively, the length of the heat sink may be optimized as well. The shroud of the heat sink is assumed to be adiabatic and its base isothermal. Our results are relevant to, e.g., microchannel cooling applications where base isothermality can be achieved by using a heat spreader or a vapor chamber. The present study is distinct from the previous work because it does not assume a uniform heat transfer coefficient, but fully captures the velocity and temperature fields by numerically solving the conjugate heat transfer problem in dimensionless form using an existing approach. We develop a dimensionless formulation and compute a dense tabulation of the relevant parameters that allows the thermal resistance to be calculated algebraically over a relevant range of dimensionless parameters. Hence, the optimization method does not require the time-consuming solution of the conjugate problem. Once the optimal dimensionless fin thickness and spacing are obtained, their dimensional counterparts are computed algebraically. The optimization method is illustrated in the context of direct liquid cooling.
    • Download: (436.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Longitudinal-Fin Heat Sink Optimization Capturing Conjugate Effects Under Fully Developed Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235766
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorKaramanis, Georgios
    contributor authorHodes, Marc
    date accessioned2017-11-25T07:19:22Z
    date available2017-11-25T07:19:22Z
    date copyright2016/08/23
    date issued2016
    identifier issn1948-5085
    identifier othertsea_008_04_041011.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235766
    description abstractWe develop a method requiring minimal computations to optimize the fin thickness and spacing in a fully shrouded longitudinal-fin heat sink (LFHS) to minimize its thermal resistance under conditions of hydrodynamically and thermally developed laminar flow. Prescribed quantities are the density, viscosity, thermal conductivity and specific heat capacity of the fluid, the thermal conductivity and height of the fins, the width and length of the heat sink, and the pressure drop across it. Alternatively, the length of the heat sink may be optimized as well. The shroud of the heat sink is assumed to be adiabatic and its base isothermal. Our results are relevant to, e.g., microchannel cooling applications where base isothermality can be achieved by using a heat spreader or a vapor chamber. The present study is distinct from the previous work because it does not assume a uniform heat transfer coefficient, but fully captures the velocity and temperature fields by numerically solving the conjugate heat transfer problem in dimensionless form using an existing approach. We develop a dimensionless formulation and compute a dense tabulation of the relevant parameters that allows the thermal resistance to be calculated algebraically over a relevant range of dimensionless parameters. Hence, the optimization method does not require the time-consuming solution of the conjugate problem. Once the optimal dimensionless fin thickness and spacing are obtained, their dimensional counterparts are computed algebraically. The optimization method is illustrated in the context of direct liquid cooling.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLongitudinal-Fin Heat Sink Optimization Capturing Conjugate Effects Under Fully Developed Conditions
    typeJournal Paper
    journal volume8
    journal issue4
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4034339
    journal fristpage41011
    journal lastpage041011-7
    treeJournal of Thermal Science and Engineering Applications:;2016:;volume( 008 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian