YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Computational Fluid Dynamics Study on Fluid Flow and Heat Transfer in Triangular Passage Solar Air Heater of Different Configurations

    Source: Journal of Solar Energy Engineering:;2017:;volume( 139 ):;issue: 004::page 41013
    Author:
    Kumar, Rajneesh
    ,
    Varun,
    ,
    Kumar, Anoop
    DOI: 10.1115/1.4036775
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The fluid flow characteristics and heat transfer in triangular duct solar air heater (SAH) have been studied experimentally and numerically for Reynolds number range from 4000 to 18,000. In the present paper, three different models of triangular duct solar air heater were considered, namely, model 1 with simple triangular duct, model 2 with rounded corner on one side of the triangle with fixed radius of curvature of 0.39 times the duct height as flow passage, and model 3 with rounded corner on one side of the triangular duct with roughness on the absorber plate of SAH. The absorber plate and apex angle values are assumed as constant in all the three models of SAH, i.e., 160 mm and 60 deg, respectively. The three-dimensional numerical simulations were performed by discretization of computational domain using finite volume method (FVM) and are analyzed with the help of computational fluid dynamics (CFD) code. Experiments were performed to validate numerical results by comparing absorber plate temperature along the length of the SAH. A detailed analysis of different models of solar air heater was carried out by solving flow governing equations numerically on ansys fluent 12.1. A close match has been observed between the simulated and experimental results of SAH with maximum percentage deviation of approximately ±5% in absorber plate temperature. The rounded apex improves velocity distribution near the corner region and helps in improving heat transfer. In the three studied models of solar air heater, the best performance is observed in the case of model 3.
    • Download: (1.783Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Computational Fluid Dynamics Study on Fluid Flow and Heat Transfer in Triangular Passage Solar Air Heater of Different Configurations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235743
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorKumar, Rajneesh
    contributor authorVarun,
    contributor authorKumar, Anoop
    date accessioned2017-11-25T07:19:20Z
    date available2017-11-25T07:19:20Z
    date copyright2017/8/6
    date issued2017
    identifier issn0199-6231
    identifier othersol_139_04_041013.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235743
    description abstractThe fluid flow characteristics and heat transfer in triangular duct solar air heater (SAH) have been studied experimentally and numerically for Reynolds number range from 4000 to 18,000. In the present paper, three different models of triangular duct solar air heater were considered, namely, model 1 with simple triangular duct, model 2 with rounded corner on one side of the triangle with fixed radius of curvature of 0.39 times the duct height as flow passage, and model 3 with rounded corner on one side of the triangular duct with roughness on the absorber plate of SAH. The absorber plate and apex angle values are assumed as constant in all the three models of SAH, i.e., 160 mm and 60 deg, respectively. The three-dimensional numerical simulations were performed by discretization of computational domain using finite volume method (FVM) and are analyzed with the help of computational fluid dynamics (CFD) code. Experiments were performed to validate numerical results by comparing absorber plate temperature along the length of the SAH. A detailed analysis of different models of solar air heater was carried out by solving flow governing equations numerically on ansys fluent 12.1. A close match has been observed between the simulated and experimental results of SAH with maximum percentage deviation of approximately ±5% in absorber plate temperature. The rounded apex improves velocity distribution near the corner region and helps in improving heat transfer. In the three studied models of solar air heater, the best performance is observed in the case of model 3.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental and Computational Fluid Dynamics Study on Fluid Flow and Heat Transfer in Triangular Passage Solar Air Heater of Different Configurations
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4036775
    journal fristpage41013
    journal lastpage041013-9
    treeJournal of Solar Energy Engineering:;2017:;volume( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian