YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Dynamic Behavior of Once-Through Direct Steam Generation Parabolic Trough Solar Collector Row Under Moving Shadow Conditions

    Source: Journal of Solar Energy Engineering:;2017:;volume( 139 ):;issue: 004::page 41002
    Author:
    Guo, Su
    ,
    Chu, Yinghao
    ,
    Liu, Deyou
    ,
    Chen, Xingying
    ,
    Xu, Chang
    ,
    Coimbra, Carlos F. M.
    ,
    Zhou, Ling
    ,
    Liu, Qunming
    DOI: 10.1115/1.4036331
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Compared with recirculation and injection modes, once-through direct steam generation (DSG) parabolic troughs are simpler to construct and require the lowest investment. However, the heat transfer fluid (HTF) in once-through DSG parabolic trough systems has the most complicated dynamic behavior, particularly during periods of moving shadows caused by small clouds and jet contrails. In this paper, a nonlinear distributed parameter dynamic model (NDPDM) is proposed to model the dynamic behavior of once-through DSG parabolic trough solar collector row under moving shadow conditions. Compared with state-of-the-art models, the proposed NDPDM possesses three characteristics: (a) adopting real-time local values of the heat transfer and friction resistance coefficients, (b) simulating the whole collector row, including the boiler and the superheated sections, and (c) modeling the disturbance of direct normal irradiance (DNI) level on DSG parabolic trough solar collector row under moving shadow conditions. Validated using experimental data, the NDPDM accurately predicts the dynamic characteristics of HTF during periods of partial and moving DNI disturbance. The fundamental and specific dynamic process of fluid parameters for a DSG parabolic trough solar collector row is provided in this paper. The results show the following: (a) Moving shadows have a significant impact on the outlet temperature and mass flow rate, and the impact lasts up to 1000 s even after the shadows completely leave the collector row. (b) The time for outlet steam temperature to reach a steady-state value for the first time is independent of the shadow width, speed, and moving direction. (c) High-frequency chattering of the outlet mass flow rate can be observed under moving DNI disturbance and will have a longer duration if the shadow width is larger or the shadow speed is slower. Compared with cases in which the whole system is shaded, partially shading cases have shown a longer duration of high-frequency chattering. (d) Both wider widths and slower speeds of shadow will cause a larger amplitude of responses in the outlet temperature and mass flow rate. When the shadow speed is low, there is a longer delay time of response in the mass flow rate of the outlet fluid. (e) The amplitude of response in the outlet temperature does not depend on the direction of clouds movement. However, if the DNI disturbance starts at the inlet of the collector row, there will be significant delay times in both outlet temperature and mass flow rate, and a larger amplitude of response in outlet mass flow rate.
    • Download: (1.562Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Dynamic Behavior of Once-Through Direct Steam Generation Parabolic Trough Solar Collector Row Under Moving Shadow Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235731
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorGuo, Su
    contributor authorChu, Yinghao
    contributor authorLiu, Deyou
    contributor authorChen, Xingying
    contributor authorXu, Chang
    contributor authorCoimbra, Carlos F. M.
    contributor authorZhou, Ling
    contributor authorLiu, Qunming
    date accessioned2017-11-25T07:19:19Z
    date available2017-11-25T07:19:19Z
    date copyright2017/25/4
    date issued2017
    identifier issn0199-6231
    identifier othersol_139_04_041002.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235731
    description abstractCompared with recirculation and injection modes, once-through direct steam generation (DSG) parabolic troughs are simpler to construct and require the lowest investment. However, the heat transfer fluid (HTF) in once-through DSG parabolic trough systems has the most complicated dynamic behavior, particularly during periods of moving shadows caused by small clouds and jet contrails. In this paper, a nonlinear distributed parameter dynamic model (NDPDM) is proposed to model the dynamic behavior of once-through DSG parabolic trough solar collector row under moving shadow conditions. Compared with state-of-the-art models, the proposed NDPDM possesses three characteristics: (a) adopting real-time local values of the heat transfer and friction resistance coefficients, (b) simulating the whole collector row, including the boiler and the superheated sections, and (c) modeling the disturbance of direct normal irradiance (DNI) level on DSG parabolic trough solar collector row under moving shadow conditions. Validated using experimental data, the NDPDM accurately predicts the dynamic characteristics of HTF during periods of partial and moving DNI disturbance. The fundamental and specific dynamic process of fluid parameters for a DSG parabolic trough solar collector row is provided in this paper. The results show the following: (a) Moving shadows have a significant impact on the outlet temperature and mass flow rate, and the impact lasts up to 1000 s even after the shadows completely leave the collector row. (b) The time for outlet steam temperature to reach a steady-state value for the first time is independent of the shadow width, speed, and moving direction. (c) High-frequency chattering of the outlet mass flow rate can be observed under moving DNI disturbance and will have a longer duration if the shadow width is larger or the shadow speed is slower. Compared with cases in which the whole system is shaded, partially shading cases have shown a longer duration of high-frequency chattering. (d) Both wider widths and slower speeds of shadow will cause a larger amplitude of responses in the outlet temperature and mass flow rate. When the shadow speed is low, there is a longer delay time of response in the mass flow rate of the outlet fluid. (e) The amplitude of response in the outlet temperature does not depend on the direction of clouds movement. However, if the DNI disturbance starts at the inlet of the collector row, there will be significant delay times in both outlet temperature and mass flow rate, and a larger amplitude of response in outlet mass flow rate.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Dynamic Behavior of Once-Through Direct Steam Generation Parabolic Trough Solar Collector Row Under Moving Shadow Conditions
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4036331
    journal fristpage41002
    journal lastpage041002-9
    treeJournal of Solar Energy Engineering:;2017:;volume( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian