YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Value-Driven Design Process: A Systematic Decision-Making Framework Considering Different Attribute Preferences From Multiple Stakeholders

    Source: Journal of Solar Energy Engineering:;2017:;volume( 139 ):;issue: 002::page 21001
    Author:
    Zhuang, Jun
    ,
    Hu, Ming
    ,
    Mousapour, Fatemeh
    DOI: 10.1115/1.4035059
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In general, architectural design is a loosely structured, open-ended activity that includes problem definition, representation, performance evaluation, and decision making. A number of approaches have been proposed in the literature to organize, guide, and facilitate the design process. The main objective of this paper is to seek a logical and rigorous means to aid in developing an optimized design that is acceptable to the customer or user of the product. The convention design approaches heavily involve decision making, which is integral to the architectural design process and is an important element in nearly all phases of design. There is a need to reframe the decision-making process to transform and improve the design process in order for finial building to achieve the performance goals. The first step in making an effective design decision is to understand the stakeholders' and team players' (architect, engineer, client, and consultant) different preferences based on their needs, experiences, and expectations of the project. In this paper, we first provide an overview about conventional decision-making method and process, identify the existing attributes that contribute to decision making in design, and outline the obstacles present in making optimized sustainable design decisions due to the uncertainty of different stakeholders' preferences. Then, we present one case study to identify and compare different preferences among engineering students, practicing architects, and the general public, and we analyze how the three groups attribute different weight to the major design attributes. This paper provides some novel insights into a value-driven sustainable design process, and it will be one of the building blocks for creating a framework to integrate game theory into the design decision-making process, considering multiple stakeholders' perspectives and preferences for building attributes as future research tasks.
    • Download: (1.206Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Value-Driven Design Process: A Systematic Decision-Making Framework Considering Different Attribute Preferences From Multiple Stakeholders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235692
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorZhuang, Jun
    contributor authorHu, Ming
    contributor authorMousapour, Fatemeh
    date accessioned2017-11-25T07:19:15Z
    date available2017-11-25T07:19:15Z
    date copyright2016/2/11
    date issued2017
    identifier issn0199-6231
    identifier othersol_139_02_021001.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235692
    description abstractIn general, architectural design is a loosely structured, open-ended activity that includes problem definition, representation, performance evaluation, and decision making. A number of approaches have been proposed in the literature to organize, guide, and facilitate the design process. The main objective of this paper is to seek a logical and rigorous means to aid in developing an optimized design that is acceptable to the customer or user of the product. The convention design approaches heavily involve decision making, which is integral to the architectural design process and is an important element in nearly all phases of design. There is a need to reframe the decision-making process to transform and improve the design process in order for finial building to achieve the performance goals. The first step in making an effective design decision is to understand the stakeholders' and team players' (architect, engineer, client, and consultant) different preferences based on their needs, experiences, and expectations of the project. In this paper, we first provide an overview about conventional decision-making method and process, identify the existing attributes that contribute to decision making in design, and outline the obstacles present in making optimized sustainable design decisions due to the uncertainty of different stakeholders' preferences. Then, we present one case study to identify and compare different preferences among engineering students, practicing architects, and the general public, and we analyze how the three groups attribute different weight to the major design attributes. This paper provides some novel insights into a value-driven sustainable design process, and it will be one of the building blocks for creating a framework to integrate game theory into the design decision-making process, considering multiple stakeholders' perspectives and preferences for building attributes as future research tasks.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleValue-Driven Design Process: A Systematic Decision-Making Framework Considering Different Attribute Preferences From Multiple Stakeholders
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4035059
    journal fristpage21001
    journal lastpage021001-6
    treeJournal of Solar Energy Engineering:;2017:;volume( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian