YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Energy Footprint of Urban Services Within Building Infrastructure

    Source: Journal of Solar Energy Engineering:;2017:;volume( 139 ):;issue: 001::page 11006
    Author:
    Fekete, Balázs M.
    ,
    Kalene, Gehan
    ,
    Cak, Anthony D.
    DOI: 10.1115/1.4035151
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Energy addiction is regarded as the primary obstacle to humanity's sustainable future. The need to change lifestyles in consumer societies to become more sustainable is advocated without a clear understanding of what elements of modern life must undergo major transformations. One of the most overlooked aspects of this question is the role of buildings that serve as homes and workspaces. The energy use for maintaining such infrastructure, especially in urban areas, and operating key services like heating or cooling, lighting, delivering water, and collecting wastewater will inevitably grow as global population becomes increasing more affluent. This paper investigates the energy costs of several aspects of these key services in urban areas, specifically delivering and heating water and heating residential spaces in the five boroughs of New York City. It provides detailed geospatial calculations as an example of assessing energy costs based on physical principles (e.g., accounting for the effects of topography and building floor elevation to deliver water and heat, and energy losses in the water distribution system). The paper also serves as a demonstration of much-needed research to price out the cost of modern life in energy terms in order to identify major inefficiencies in our current urban infrastructure, as well as the potential for efficiency improvements. While these calculations do not directly incorporate observed data, the principles demonstrated here highlight the use of quantitative geospatial analyses (based on fundamental physics) in order to look at urban infrastructures, particularly for planning and designing new cities or rebuild existing ones.
    • Download: (3.853Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Energy Footprint of Urban Services Within Building Infrastructure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235690
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorFekete, Balázs M.
    contributor authorKalene, Gehan
    contributor authorCak, Anthony D.
    date accessioned2017-11-25T07:19:15Z
    date available2017-11-25T07:19:15Z
    date copyright2016/2/12
    date issued2017
    identifier issn0199-6231
    identifier othersol_139_01_011006.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235690
    description abstractEnergy addiction is regarded as the primary obstacle to humanity's sustainable future. The need to change lifestyles in consumer societies to become more sustainable is advocated without a clear understanding of what elements of modern life must undergo major transformations. One of the most overlooked aspects of this question is the role of buildings that serve as homes and workspaces. The energy use for maintaining such infrastructure, especially in urban areas, and operating key services like heating or cooling, lighting, delivering water, and collecting wastewater will inevitably grow as global population becomes increasing more affluent. This paper investigates the energy costs of several aspects of these key services in urban areas, specifically delivering and heating water and heating residential spaces in the five boroughs of New York City. It provides detailed geospatial calculations as an example of assessing energy costs based on physical principles (e.g., accounting for the effects of topography and building floor elevation to deliver water and heat, and energy losses in the water distribution system). The paper also serves as a demonstration of much-needed research to price out the cost of modern life in energy terms in order to identify major inefficiencies in our current urban infrastructure, as well as the potential for efficiency improvements. While these calculations do not directly incorporate observed data, the principles demonstrated here highlight the use of quantitative geospatial analyses (based on fundamental physics) in order to look at urban infrastructures, particularly for planning and designing new cities or rebuild existing ones.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEnergy Footprint of Urban Services Within Building Infrastructure
    typeJournal Paper
    journal volume139
    journal issue1
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4035151
    journal fristpage11006
    journal lastpage011006-6
    treeJournal of Solar Energy Engineering:;2017:;volume( 139 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian