YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Goal-Oriented, Sequential, Inverse Design Method for the Horizontal Integration of a Multistage Hot Rod Rolling System

    Source: Journal of Mechanical Design:;2017:;volume( 139 ):;issue: 003::page 31403
    Author:
    Nellippallil, Anand Balu
    ,
    Song, Kevin N.
    ,
    Goh, Chung-Hyun
    ,
    Zagade, Pramod
    ,
    Gautham, B. P.
    ,
    Allen, Janet K.
    ,
    Mistree, Farrokh
    DOI: 10.1115/1.4035555
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The steel manufacturing process is characterized by the requirement of expeditious development of high quality products at low cost through the effective use of available resources. Identifying solutions that meet the conflicting commercially imperative goals of such process chains is hard using traditional search techniques. The complexity in such a problem increases due to the presence of a large number of design variables, constraints and bounds, conflicting goals and the complex sequential relationships of the different stages of manufacturing. A classic example of such a manufacturing problem is the design of a rolling system for manufacturing a steel rod. This is a sequential process in which information flows from first rolling stage/pass to the last rolling pass and the decisions made at first pass influence the decisions that are made at the later passes. In this context, we define horizontal integration as the facilitation of information flow from one stage to another thereby establishing the integration of manufacturing stages to realize the end product. In this paper, we present an inverse design method based on well-established empirical models and response surface models developed through simulation experiments (finite-element based) along with the compromise decision support problem (cDSP) construct to support integrated information flow across different stages of a multistage hot rod rolling system. The method is goal-oriented because the design decisions are first made based on the end requirements identified for the process at the last rolling pass and these decisions are then passed to the preceding rolling passes following the sequential order in an inverse manner to design the entire rolling process chain to achieve the horizontal integration of stages. We illustrate the efficacy of the method by carrying out the design of a multistage rolling system. We formulate the cDSP for the second and fourth pass of a four pass rolling chain. The stages are designed by sequentially passing the design information obtained after exercising the cDSP for the last pass for different scenarios and identifying the best combination of design variables that satisfies the conflicting goals. The cDSP for the second pass helps in integrated information flow from fourth to first pass and in meeting specified goals imposed by the fourth and third passes. The end goals identified for this problem for the fourth pass are minimization of ovality (quality) of rod, maximization of throughput (productivity), and minimization of rolling load (performance and cost). The method can be instantiated for other multistage manufacturing processes such as the steel making process chain having several unit operations.
    • Download: (4.682Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Goal-Oriented, Sequential, Inverse Design Method for the Horizontal Integration of a Multistage Hot Rod Rolling System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234928
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorNellippallil, Anand Balu
    contributor authorSong, Kevin N.
    contributor authorGoh, Chung-Hyun
    contributor authorZagade, Pramod
    contributor authorGautham, B. P.
    contributor authorAllen, Janet K.
    contributor authorMistree, Farrokh
    date accessioned2017-11-25T07:18:02Z
    date available2017-11-25T07:18:02Z
    date copyright2017/19/1
    date issued2017
    identifier issn1050-0472
    identifier othermd_139_03_031403.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234928
    description abstractThe steel manufacturing process is characterized by the requirement of expeditious development of high quality products at low cost through the effective use of available resources. Identifying solutions that meet the conflicting commercially imperative goals of such process chains is hard using traditional search techniques. The complexity in such a problem increases due to the presence of a large number of design variables, constraints and bounds, conflicting goals and the complex sequential relationships of the different stages of manufacturing. A classic example of such a manufacturing problem is the design of a rolling system for manufacturing a steel rod. This is a sequential process in which information flows from first rolling stage/pass to the last rolling pass and the decisions made at first pass influence the decisions that are made at the later passes. In this context, we define horizontal integration as the facilitation of information flow from one stage to another thereby establishing the integration of manufacturing stages to realize the end product. In this paper, we present an inverse design method based on well-established empirical models and response surface models developed through simulation experiments (finite-element based) along with the compromise decision support problem (cDSP) construct to support integrated information flow across different stages of a multistage hot rod rolling system. The method is goal-oriented because the design decisions are first made based on the end requirements identified for the process at the last rolling pass and these decisions are then passed to the preceding rolling passes following the sequential order in an inverse manner to design the entire rolling process chain to achieve the horizontal integration of stages. We illustrate the efficacy of the method by carrying out the design of a multistage rolling system. We formulate the cDSP for the second and fourth pass of a four pass rolling chain. The stages are designed by sequentially passing the design information obtained after exercising the cDSP for the last pass for different scenarios and identifying the best combination of design variables that satisfies the conflicting goals. The cDSP for the second pass helps in integrated information flow from fourth to first pass and in meeting specified goals imposed by the fourth and third passes. The end goals identified for this problem for the fourth pass are minimization of ovality (quality) of rod, maximization of throughput (productivity), and minimization of rolling load (performance and cost). The method can be instantiated for other multistage manufacturing processes such as the steel making process chain having several unit operations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Goal-Oriented, Sequential, Inverse Design Method for the Horizontal Integration of a Multistage Hot Rod Rolling System
    typeJournal Paper
    journal volume139
    journal issue3
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4035555
    journal fristpage31403
    journal lastpage031403-16
    treeJournal of Mechanical Design:;2017:;volume( 139 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian