Size-Dependent Flexoelectric Response of a Truncated Cone and the Consequent Ramifications for the Experimental Measurement of Flexoelectric PropertiesSource: Journal of Applied Mechanics:;2017:;volume( 084 ):;issue: 010::page 101007Author:Deng, Qian
DOI: 10.1115/1.4037552Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: The flexoelectric effect is an electromechanical phenomenon that is universally present in all dielectrics and exhibits a strong size-dependency. Through a judicious exploitation of scale effects and symmetry, flexoelectricity has been used to design novel types of structures and materials including piezoelectric materials without using piezoelectric. Flexoelectricity links electric polarization with strain gradients and is rather difficult to estimate experimentally. One well-acknowledged approach is to fabricate truncated pyramids and/or cones and examine their electrical response. A theoretical model is then used to relate the measured experimental response to estimate the flexoelectric properties. In this work, we revisit the typical model that is used in the literature and solve the problem of a truncated cone under compression or tension. We obtained closed-form analytical solutions to this problem and examine the size and shape effects of flexoelectric response of the aforementioned structure. In particular, we emphasize the regime in which the existing models are likely to incur significant error.
|
Collections
Show full item record
contributor author | Deng, Qian | |
date accessioned | 2017-11-25T07:17:24Z | |
date available | 2017-11-25T07:17:24Z | |
date copyright | 2017/31/8 | |
date issued | 2017 | |
identifier issn | 0021-8936 | |
identifier other | jam_084_10_101007.pdf | |
identifier uri | http://138.201.223.254:8080/yetl1/handle/yetl/4234552 | |
description abstract | The flexoelectric effect is an electromechanical phenomenon that is universally present in all dielectrics and exhibits a strong size-dependency. Through a judicious exploitation of scale effects and symmetry, flexoelectricity has been used to design novel types of structures and materials including piezoelectric materials without using piezoelectric. Flexoelectricity links electric polarization with strain gradients and is rather difficult to estimate experimentally. One well-acknowledged approach is to fabricate truncated pyramids and/or cones and examine their electrical response. A theoretical model is then used to relate the measured experimental response to estimate the flexoelectric properties. In this work, we revisit the typical model that is used in the literature and solve the problem of a truncated cone under compression or tension. We obtained closed-form analytical solutions to this problem and examine the size and shape effects of flexoelectric response of the aforementioned structure. In particular, we emphasize the regime in which the existing models are likely to incur significant error. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Size-Dependent Flexoelectric Response of a Truncated Cone and the Consequent Ramifications for the Experimental Measurement of Flexoelectric Properties | |
type | Journal Paper | |
journal volume | 84 | |
journal issue | 10 | |
journal title | Journal of Applied Mechanics | |
identifier doi | 10.1115/1.4037552 | |
journal fristpage | 101007 | |
journal lastpage | 101007-8 | |
tree | Journal of Applied Mechanics:;2017:;volume( 084 ):;issue: 010 | |
contenttype | Fulltext |