YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Physics of the Microchannel Flow Boiling Process and Comparison With the Existing Theories

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 011::page 111503
    Author:
    Bigham, Sajjad
    ,
    Moghaddam, Saeed
    DOI: 10.1115/1.4036655
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this study, six benchmark experiments are conducted on bubbles at different growth stages to evaluate the assumptions of the existing microchannel flow boiling heat transfer models/hypothesis. The results show that the bubble ebullition process triggers a spike in the local surface heat flux due to the thin film evaporation and transient conduction heat transfer mechanisms. This enhancement in the surface heat flux is limited to a very small area at the bubble–surface contact region at the nucleation site limiting the overall heat transfer contribution of the bubble ebullition process. The contribution of these two mechanisms of heat transfer increases as the bubble–surface contact area becomes larger. As the bubbles length increases, the time period of activation of the microlayer evaporation mechanism substantially increases while that of the transient conduction mechanism remains relatively unchanged. When the microchannel is mostly occupied by bubbles, the thin film evaporation mechanism becomes the dominant heat transfer mode. The results clearly indicate that single-phase heat transfer mechanism active at surface regions not covered by bubbles is governed by the laminar flow theory (for the test conditions presented here). In essence, a measureable enhancement effect in the liquid phase due to bubbles growth and flow has not been observed. A comparison with the existing microchannel flow boiling models suggests that the three-zone flow boiling model can qualitatively describe the heat transfer events observed in this experiment but fails to accurately predict the magnitude of the heat transfer mechanisms.
    • Download: (4.695Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Physics of the Microchannel Flow Boiling Process and Comparison With the Existing Theories

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234356
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorBigham, Sajjad
    contributor authorMoghaddam, Saeed
    date accessioned2017-11-25T07:17:01Z
    date available2017-11-25T07:17:01Z
    date copyright2017/21/6
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_11_111503.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234356
    description abstractIn this study, six benchmark experiments are conducted on bubbles at different growth stages to evaluate the assumptions of the existing microchannel flow boiling heat transfer models/hypothesis. The results show that the bubble ebullition process triggers a spike in the local surface heat flux due to the thin film evaporation and transient conduction heat transfer mechanisms. This enhancement in the surface heat flux is limited to a very small area at the bubble–surface contact region at the nucleation site limiting the overall heat transfer contribution of the bubble ebullition process. The contribution of these two mechanisms of heat transfer increases as the bubble–surface contact area becomes larger. As the bubbles length increases, the time period of activation of the microlayer evaporation mechanism substantially increases while that of the transient conduction mechanism remains relatively unchanged. When the microchannel is mostly occupied by bubbles, the thin film evaporation mechanism becomes the dominant heat transfer mode. The results clearly indicate that single-phase heat transfer mechanism active at surface regions not covered by bubbles is governed by the laminar flow theory (for the test conditions presented here). In essence, a measureable enhancement effect in the liquid phase due to bubbles growth and flow has not been observed. A comparison with the existing microchannel flow boiling models suggests that the three-zone flow boiling model can qualitatively describe the heat transfer events observed in this experiment but fails to accurately predict the magnitude of the heat transfer mechanisms.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePhysics of the Microchannel Flow Boiling Process and Comparison With the Existing Theories
    typeJournal Paper
    journal volume139
    journal issue11
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4036655
    journal fristpage111503
    journal lastpage111503-10
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian