Show simple item record

contributor authorBigham, Sajjad
contributor authorMoghaddam, Saeed
date accessioned2017-11-25T07:17:01Z
date available2017-11-25T07:17:01Z
date copyright2017/21/6
date issued2017
identifier issn0022-1481
identifier otherht_139_11_111503.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234356
description abstractIn this study, six benchmark experiments are conducted on bubbles at different growth stages to evaluate the assumptions of the existing microchannel flow boiling heat transfer models/hypothesis. The results show that the bubble ebullition process triggers a spike in the local surface heat flux due to the thin film evaporation and transient conduction heat transfer mechanisms. This enhancement in the surface heat flux is limited to a very small area at the bubble–surface contact region at the nucleation site limiting the overall heat transfer contribution of the bubble ebullition process. The contribution of these two mechanisms of heat transfer increases as the bubble–surface contact area becomes larger. As the bubbles length increases, the time period of activation of the microlayer evaporation mechanism substantially increases while that of the transient conduction mechanism remains relatively unchanged. When the microchannel is mostly occupied by bubbles, the thin film evaporation mechanism becomes the dominant heat transfer mode. The results clearly indicate that single-phase heat transfer mechanism active at surface regions not covered by bubbles is governed by the laminar flow theory (for the test conditions presented here). In essence, a measureable enhancement effect in the liquid phase due to bubbles growth and flow has not been observed. A comparison with the existing microchannel flow boiling models suggests that the three-zone flow boiling model can qualitatively describe the heat transfer events observed in this experiment but fails to accurately predict the magnitude of the heat transfer mechanisms.
publisherThe American Society of Mechanical Engineers (ASME)
titlePhysics of the Microchannel Flow Boiling Process and Comparison With the Existing Theories
typeJournal Paper
journal volume139
journal issue11
journal titleJournal of Heat Transfer
identifier doi10.1115/1.4036655
journal fristpage111503
journal lastpage111503-10
treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 011
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record