YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cross-Flow Heat Exchanger: Volume-Averaging Formulation of a Unit Cell Model and Thermal Performance Analysis

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 005::page 51801
    Author:
    Zhang, Hengyun
    ,
    Wang, Zhaoqiang
    DOI: 10.1115/1.4035997
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A formulation of the unit cell model and the corresponding thermal performance analysis for the cross-flow heat exchanger are carried out, with the design goal of dissipating 175 W from a high-power electronic chip in a compact space. A liquid to liquid heat exchanger in the cross-flow arrangement is preferred due to its compact size and high effectiveness. The unit cell model is formulated based on the volume-averaging method to determine the heat transfer coefficient involving two heat exchanging fluids and a solid. The various factors such as channel shape, channel edge length, channel size, and heat exchanger material can be examined based on the unit cell model. The obtained heat transfer coefficients are used for the estimation of the heat exchanger thermal performance based on the effectiveness–number of transfer units (NTU) correlation. To verify the model formulation, the heat and fluid flow over the cross-flow heat exchangers are investigated through the full-field numerical computation. The amount of heat exchanged from the numerical computation is extracted and compared with the predicted results from the unit cell model. A fairly good agreement is obtained between the two approaches. Based on the unit cell model, an aluminum cross heat exchanger with eight channel layers for the hot and cold fluids, 15 channels in each layer with a channel diameter of 2 mm, is able to meet the design target.
    • Download: (3.071Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cross-Flow Heat Exchanger: Volume-Averaging Formulation of a Unit Cell Model and Thermal Performance Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234221
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorZhang, Hengyun
    contributor authorWang, Zhaoqiang
    date accessioned2017-11-25T07:16:49Z
    date available2017-11-25T07:16:49Z
    date copyright2017/7/3
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_05_051801.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234221
    description abstractA formulation of the unit cell model and the corresponding thermal performance analysis for the cross-flow heat exchanger are carried out, with the design goal of dissipating 175 W from a high-power electronic chip in a compact space. A liquid to liquid heat exchanger in the cross-flow arrangement is preferred due to its compact size and high effectiveness. The unit cell model is formulated based on the volume-averaging method to determine the heat transfer coefficient involving two heat exchanging fluids and a solid. The various factors such as channel shape, channel edge length, channel size, and heat exchanger material can be examined based on the unit cell model. The obtained heat transfer coefficients are used for the estimation of the heat exchanger thermal performance based on the effectiveness–number of transfer units (NTU) correlation. To verify the model formulation, the heat and fluid flow over the cross-flow heat exchangers are investigated through the full-field numerical computation. The amount of heat exchanged from the numerical computation is extracted and compared with the predicted results from the unit cell model. A fairly good agreement is obtained between the two approaches. Based on the unit cell model, an aluminum cross heat exchanger with eight channel layers for the hot and cold fluids, 15 channels in each layer with a channel diameter of 2 mm, is able to meet the design target.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCross-Flow Heat Exchanger: Volume-Averaging Formulation of a Unit Cell Model and Thermal Performance Analysis
    typeJournal Paper
    journal volume139
    journal issue5
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4035997
    journal fristpage51801
    journal lastpage051801-10
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian